

ESD

TVS

MOS

LDO

Diode

Sensor

DC-DC

Product Specification

Domestic Part Number	BSP225
Overseas Part Number	BSP225
▶ Equivalent Part Number	BSP225

P-channel enhancement mode vertical D-MOS transistor

FEATURES

- Low R_{DS(on)}
- Direct interface to C-MOS, TTL, etc.
- High-speed switching
- No secondary breakdown.

DESCRIPTION

P-channel enhancement mode vertical D-MOS transistor in a miniature SOT223 envelope, intended for use in relay, high-speed and line transformer drivers.

PINNING - SOT223

PIN	DESCRIPTION
1	gate
2	drain
3	source
4	drain

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MAX.	UNIT
-V _{DS}	drain-source voltage		250	V
$-I_D$	drain current	DC value	225	mA
R _{DS(on)}	drain-source on-resistance	$-I_D = 200 \text{ mA}$ $-V_{GS} = 10 \text{ V}$	15	Ω
-V _{GS(th)}	gate-source threshold voltage	$-I_D = 1 \text{ mA}$ $V_{GS} = V_{DS}$	2.8	V

PIN CONFIGURATION

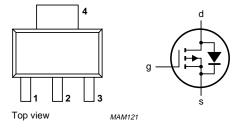


Fig.1 Simplified outline and symbol.

In accordance with the Absolute Maximum System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT					
-V _{DS}	drain-source voltage		_	250	V					
±V _{GSO}	gate-source voltage	open drain	_	20	V					
$-I_D$	drain current	DC value	_	225	mA					
-I _{DM}	drain current	peak value	_	600	mA					
P _{tot}	total power dissipation	up to T _{amb} = 25 °C (note 1)	_	1.5	W					
T _{stg}	storage temperature range		-65	150	°C					
Tj	junction temperature		_	150	°C					

Note

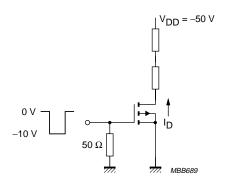
1. Device mounted on an epoxy printed-circuit board, $40 \times 40 \times 1.5$ mm, mounting pad for the drain lead minimum 6 cm^2 .

THERMAL RESISTANCE

SYMBOL	PARAMETER	VALUE	UNIT
R _{th j-a}	from junction to ambient (note 1)	83.3	K/W

Note

1. Device mounted on an epoxy printed-circuit board, 40 x 40 x 1.5 mm, mounting pad for the drain lead minimum 6 cm².



CHARACTERISTICS

 $T_j = 25$ °C unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT	
$V_{(BR)DSS}$	drain-source breakdown voltage	$-I_D = 10 \mu A$ $V_{GS} = 0$	250	_	_	V	
I _{DSS}	drain-source leakage current	$-V_{DS} = 200 \text{ V}$ $V_{GS} = 0$	-	-	1	μΑ	
I _{GSS}	gate-source leakage current	$V_{DS} = 0$ $\pm V_{GS} = 20 \text{ V}$	_	-	100	nA	
V _{GS(th)}	gate-source threshold voltage	$-I_D = 1 \text{ mA}$ $V_{GS} = V_{DS}$	0.8	_	2.8	V	
R _{DS(on)}	drain-source on-resistance	-I _D = 200 mA -V _{GS} = 10 V	-	10	15	Ω	
Y _{fs}	transfer admittance	$-I_D = 200 \text{ mA}$ $-V_{DS} = 25 \text{ V}$	100	200	-	mS	
C _{iss}	input capacitance	$-V_{DS} = 25 V$ $-V_{GS} = 0$ $f = 1 MHz$	-	65	90	pF	
C _{oss}	output capacitance	$-V_{DS} = 25 V$ $-V_{GS} = 0$ $f = 1 MHz$	-	20	30	pF	
C _{rss} feedback capacitance		$-V_{DS} = 25 \text{ V} -V_{GS} = 0$ f = 1 MHz	-	6	15	pF	
Switching t	imes (see Figs 2 and 3)						
on	turn-on time	$-I_D = 250 \text{ mA}$ $-V_{DD} = 50 \text{ V}$ $-V_{GS} = 0 \text{ to } 10 \text{ V}$	-	5	10	ns	
off	turn-off time	$-I_D = 250 \text{ mA}$ $-V_{DD} = 50 \text{ V}$ $-V_{GS} = 0 \text{ to } 10 \text{ V}$	_	20	30	ns	

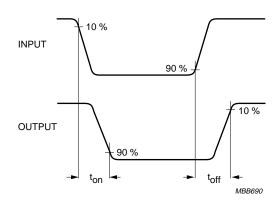
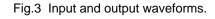
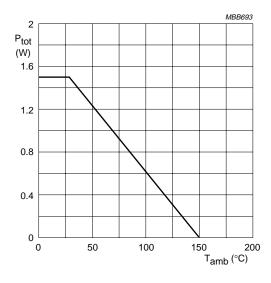
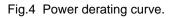





Fig.2 Switching time test circuit.

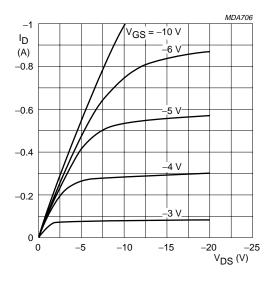
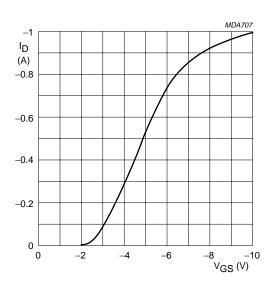



Fig.5 Typical output characteristics; $T_j = 25$ °C.

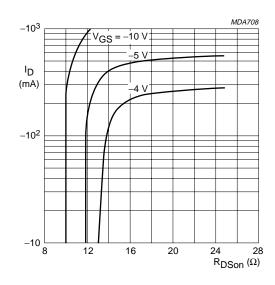


Fig.6 Typical transfer characteristic; $-V_{DS} = 10 \text{ V}$; $T_i = 25 \,^{\circ}\text{C}$.

Fig.7 Typical on-resistance as a function of drain current; $T_j = 25$ °C; $R_{DS(on)} = f(I_D)$.

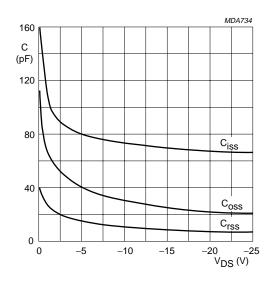


Fig.8 Typical capacitances as a function of drain-source voltage; V_{GS} = 0; f = 1 MHz; T_j = 25 °C.

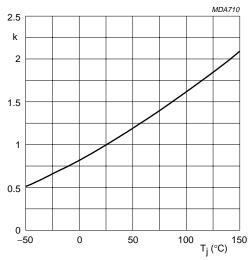


Fig.9 Temperature coefficient of drain-source on-resistance;

$$k = \frac{R_{DS\,(on)} \text{ at } T_j}{R_{DS\,(on)} \text{ at } 25\,°C};$$

typical R_{DS(on)} at -200 mA/-10 V.

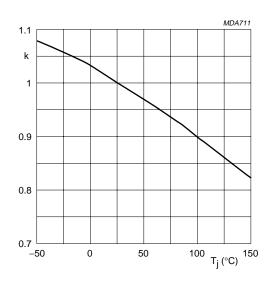
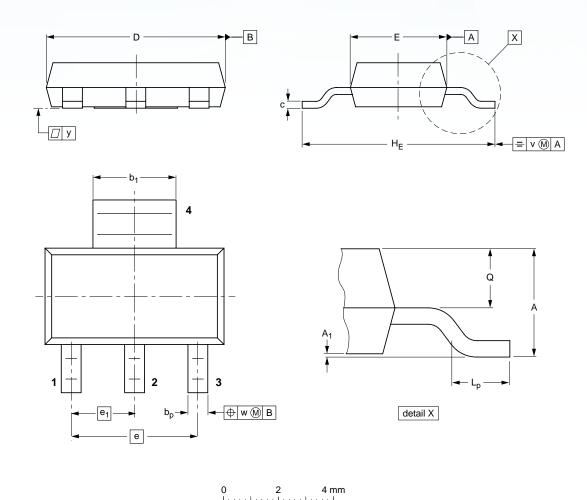


Fig.10 Temperature coefficient of gate-source threshold voltage;

$$k = \frac{-V_{GS\,(th)} \ at \ T_j}{-V_{GS\,(th)} \ at \ 25 \ ^{\circ}C};$$


typical $V_{GS(th)}$ at -1 mA.

PACKAGE OUTLINE

Plastic surface mounted package; collector pad for good heat transfer; 4 leads

SOT223

DIMENSIONS (mm are the original dimensions)

UNIT	Α	A ₁	bp	b ₁	С	D	E	е	e ₁	HE	Lp	Q	٧	w	у
mm	1.8 1.5	0.10 0.01	0.80 0.60	3.1 2.9	0.32 0.22	6.7 6.3	3.7 3.3	4.6	2.3	7.3 6.7	1.1 0.7	0.95 0.85	0.2	0.1	0.1

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT223						96-11-11 97-02-28

Disclaimer

EVVOSEMI ("EVVO") reserves the right to make corrections, enhancements, improvements, and other changes to its products and services at any time, and to discontinue any product or service without notice.

EVVO warrants the performance of its hardware products to the specifications applicable at the time of sale in accordance with its standard warranty. Testing and other quality control techniques are used as deemed necessary by EVVO to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Customers should obtain and confirm the latest product information and specifications before final design, purchase, or use. EVVO makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does EVVO assume any liability for application assistance or customer product design. EVVO does not warrant or accept any liability for products that are purchased or used for any unintended or unauthorized application.

EVVO products are not authorized for use as critical components in life support devices or systems without the express written approval of EVVOSEMI.

The EVVO logo and EVVOSEMI are trademarks of EVVOSEMI or its subsidiaries in relevant jurisdictions. EVVO reserves the right to make changes without further notice to any products herein.