

ESD

TVS

MOS

LDO

Diode

Sensor

DC-DC

Product Specification

Domestic Part Number	BSP62
Overseas Part Number	BSP62
▶ Equivalent Part Number	BSP62

PNP Darlington transistors

FEATURES

- High current (max. 0.5 A)
- Low voltage (max. 80 V)
- Integrated diode and resistor.

APPLICATIONS

- Industrial switching applications such as:
 - Print hammer
 - Solenoid
 - Relay and lamp drivers.

DESCRIPTION

PNP Darlington transistor in a SOT223 plastic package.

PINNING

PIN	DESCRIPTION						
1	base						
2,4	collector						
3	emitter						

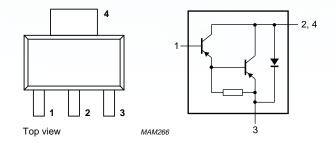


Fig.1 Simplified outline (SOT223) and symbol.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT	
V _{CBO}	collector-base voltage	open emitter				
			_	-90	V	
V_{CES}	collector-emitter voltage	$V_{BE} = 0$				
			_	-80	V	
V _{EBO}	emitter-base voltage	open collector	_	-5	V	
I _C	collector current (DC)		_	-0.5	Α	
I _{CM}	peak collector current		_	-1.5	А	
I _B	base current (DC)		_	-100	mA	
P _{tot}	total power dissipation	T _{amb} ≤ 25 °C; note 1	_	1.25	W	
T _{stg}	storage temperature		-65	+150	°C	
T _j	junction temperature		_	150	°C	
T _{amb}	operating ambient temperature		-65	+150	°C	

Note

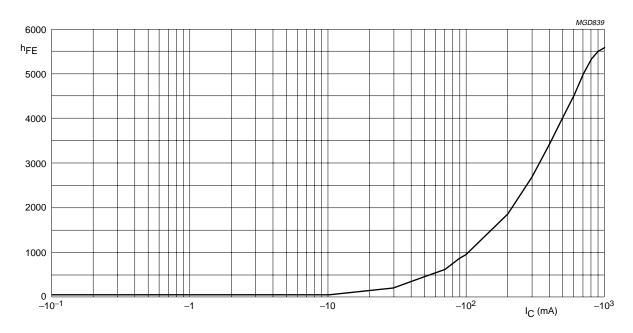
1. Device mounted on a printed-circuit board, single sided copper, tinplated, mounting pad for collector 1 cm². For other mounting conditions, see *"Thermal considerations for the SOT223 in the General Part of associated Handbook"*.

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th j-a}	thermal resistance from junction to ambient	note 1	98	K/W
R _{th j-s}	thermal resistance from junction to solder point		17	K/W

Note

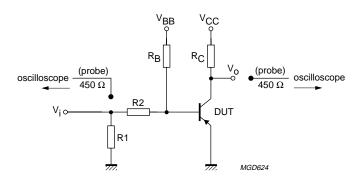
1. Device mounted on a printed-circuit board, single sided copper, tinplated, mounting pad for collector 1 cm². For other mounting conditions, see *"Thermal considerations for the SOT223 in the General Part of associated Handbook"*.

CHARACTERISTICS


 $T_i = 25$ °C unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT	
CES	collector cut-off current						
		$V_{BE} = 0; V_{CE} = -80 \text{ V}$	_	_	-50	nA	
EBO	emitter cut-off current	$I_C = 0; V_{EB} = -4 \text{ V}$	_	_	-50	nA	
FE D	DC current gain	$V_{CE} = -10 \text{ V}$; note 1; see Fig.2					
		$I_{\rm C} = -150 \text{ mA}$	1000	_	_		
		$I_{\rm C} = -500 \text{mA}$	2000	_	_		
CEsat	collector-emitter saturation	$I_C = -500 \text{ mA}; I_B = -0.5 \text{ mA}$	_	_	-1.3	V	
	voltage	$I_C = -500 \text{ mA}; I_B = -0.5 \text{ mA};$ $T_j = 150 \text{ °C}$	_	_	-1.3	V	
BEsat	base-emitter saturation voltage	$I_C = -500 \text{ mA}; I_B = -0.5 \text{ mA}$	_	_	-1.9	V	
	transition frequency	$I_C = -500 \text{ mA}; V_{CE} = -5 \text{ V};$ f = 100 MHz	_	200	-	MHz	
Switching t	imes (between 10% and 90% lev	rels); see Fig.3	,		•	•	
on	turn-on time	$I_{Con} = -500 \text{ mA}; I_{Bon} = -0.5 \text{ mA};$	_	400	_	ns	
off	turn-off time	I _{Boff} = 0.5 mA	_	1500	_	ns	

Note


1. Pulse test: $t_p \le 300~\mu s;~\delta \le 0.02.$

 $V_{CE} = -10 \text{ V}.$

Fig.2 DC current gain; typical values.

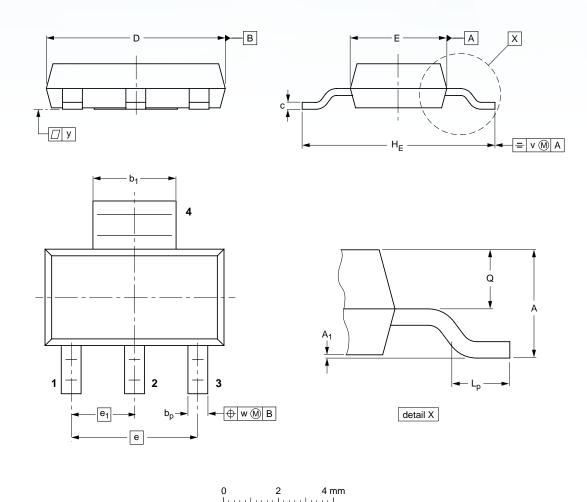

$$\begin{split} &V_i = -10 \; V; \; T = 200 \; \mu s; \; t_p = 6 \; \mu s; \; t_r = t_f \leq 3 \; ns. \\ &R1 = 56 \; \Omega; \; R2 = 10 \; k\Omega; \; R_B = 10 \; k\Omega; \; R_C = 18 \; \Omega. \\ &V_{BB} = 1.8 \; V; \; V_{CC} = -10.7 \; V. \\ &Oscilloscope: input impedance \; Z_i = 50 \; \Omega. \end{split}$$

Fig.3 Test circuit for switching times.

Plastic surface mounted package; collector pad for good heat transfer; 4 leads

SOT223

DIMENSIONS (mm are the original dimensions)

UNIT	Α	A ₁	bp	b ₁	С	D	E	е	e ₁	HE	Lp	Q	٧	w	у
mm	1.8 1.5	0.10 0.01	0.80 0.60	3.1 2.9	0.32 0.22	6.7 6.3	3.7 3.3	4.6	2.3	7.3 6.7	1.1 0.7	0.95 0.85	0.2	0.1	0.1

OUTLINE		EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT223						96-11-11 97-02-28

Disclaimer

EVVOSEMI ("EVVO") reserves the right to make corrections, enhancements, improvements, and other changes to its products and services at any time, and to discontinue any product or service without notice.

EVVO warrants the performance of its hardware products to the specifications applicable at the time of sale in accordance with its standard warranty. Testing and other quality control techniques are used as deemed necessary by EVVO to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Customers should obtain and confirm the latest product information and specifications before final design, purchase, or use. EVVO makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does EVVO assume any liability for application assistance or customer product design. EVVO does not warrant or accept any liability for products that are purchased or used for any unintended or unauthorized application.

EVVO products are not authorized for use as critical components in life support devices or systems without the express written approval of EVVOSEMI.

The EVVO logo and EVVOSEMI are trademarks of EVVOSEMI or its subsidiaries in relevant jurisdictions. EVVO reserves the right to make changes without further notice to any products herein.