

ESD

TVS

MOS

LDO

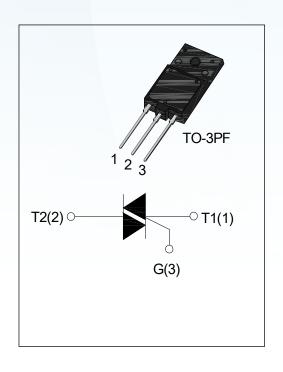
Diode

Sensor

DC-DC

Product Specification

Domestic Part Number	EVT40UF-800BW
Overseas Part Number	EVT40UF-800BW
▶ Equivalent Part Number	


EVT40UF-800BW 40A TRIACs

DESCRIPTION:

With high ability to withstand the shock loading of large current, EVT40UF-800BW triacs provide high dv/dt rate with strong resistance to electromagnetic interface. With high commutation performances, especially recommended for use on inductive load. From all three terminals to external heatsink.

MAIN FEATURES

Symbol	Value	Unit
I _{T(RMS)}	40	Α
V _{DRM} /V _{RRM}	800	V

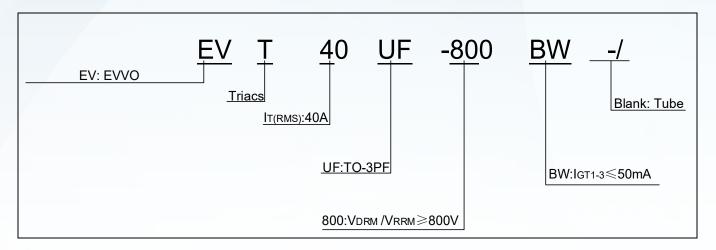
ABSOLUTE MAXIMUM RATINGS

Par	rameter	Symbol	Value	Unit
Storage junction temperature range		T _{stg}	-40-150	$^{\circ}$
Operating junction t	emperature range	Tj	-40-125	$^{\circ}$
Repetitive peak off-	state voltage (Tj=25℃)	V _{DRM}	800	V
Repetitive peak rev	erse voltage (Tj=25℃)	V _{RRM}	800	V
RMS on-state current	TO-3PF (T _C =70°C)	I _{T(RMS)}	40	А
Non repetitive surge (full cycle, tp=16.7m	e peak on-state current ns)	Ітѕм	420	Α
I ² t value for fusing (tp=10ms)	l ² t	880	A ² s
Critical rate of rise of $(I_G = 2 \times I_{GT})$	of on-state current	dl/dt	50	A/µs
Peak gate current		I _{GM}	8	Α
Average gate power dissipation		P _{G(AV)}	1	W
Peak gate power		P _{GM}	10	W
Peak pulse voltage (Tj=25℃; non-repet	itive,off-state;FIG.7)	Vpp	1.5	kV

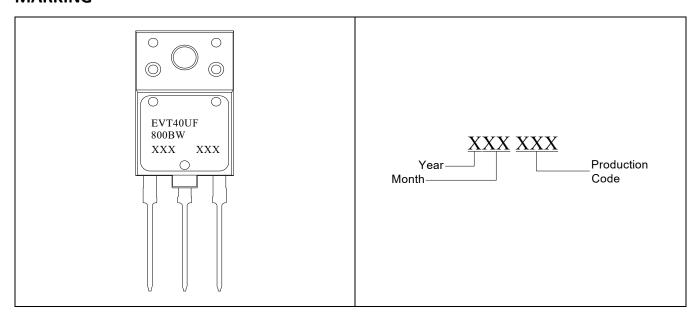
ELECTRICAL CHARACTERISTICS (T_j =25 $^{\circ}$ C unless otherwise specified)

Symbol	Test Condition	Quadrant		Unit	
I _{GT}	V _D =12V R _L =33Ω	I - II -III	MAX	50	mA
V _G T	VD - 12V KL -3312	I - II -III	MAX	1.3	V
V _{GD}	$V_D = V_{DRM} T_j = 125$ °C $R_L = 3.3$ KΩ	I - II -III	MIN	0.2	V
1.		I -III	MAX	80	т Л
I _L I _G =1.2I _G τ	II	MAX	200	mA	
IH	I _T =100mA		MAX	100	mA
dv/dt	$V_D=2/3V_{DRM}$ Gate Open $T_j=125^{\circ}\mathbb{C}$		MIN	1000	V/µs

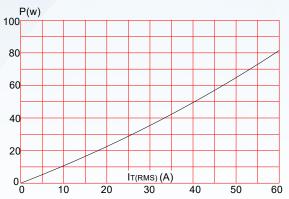
STATIC CHARACTERISTICS


Symbol	Parameter		Value(MAX)	Unit
V _{TM}	I _{тм} =60A tp=380µs	Tj=25℃	1.5	V
I _{DRM}	\\- =\\- =\\ \\ =\\ \\ =\\ \\ =\\ \\ =\\ \\ =\\ \\	T _j =25℃	10	μΑ
I _{RRM}	V _D =V _{DRM} V _R =V _{RRM}	T _j =125℃	5	mA
Vто	Threshold voltage	Tj=125℃	0.95	V
Rd	Dynamic resistance	Tj=125℃	6.2	mΩ

THERMAL RESISTANCES


Symbol	Parameter	Value	Unit
R _{th(j-c)}	junction to case(AC)	1.13	°C/W

ORDERING INFORMATION



MARKING

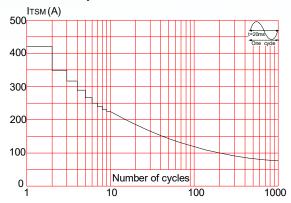
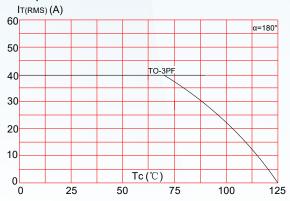


FIG.1 Maximum power dissipation versus RMS on-state current


FIG.3: Surge peak on-state current versus number of cycles

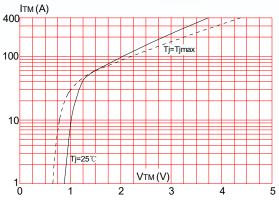

FIG.5: Non-repetitive surge peak on-state current for a sinusoidal pulse with width tp<20ms, and corresponging value of I²t (dI/dt < 50A/µs)

FIG.2: RMS on-state current versus case temperature

FIG.4: On-state characteristics (maximum values)

FIG.6: Relative variations of gate trigger current, holding current and latching current versus junction temperature

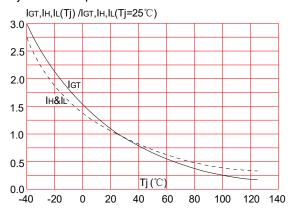
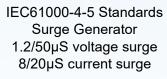
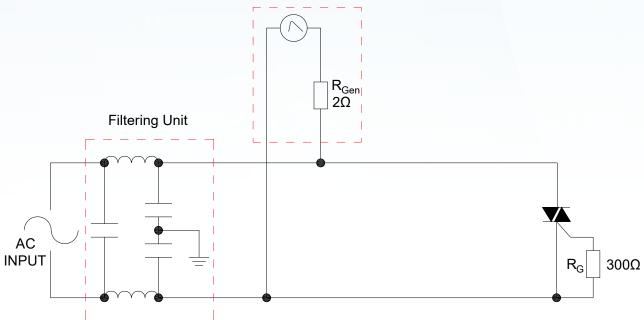
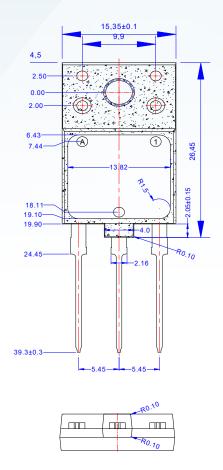
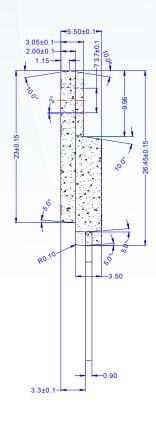
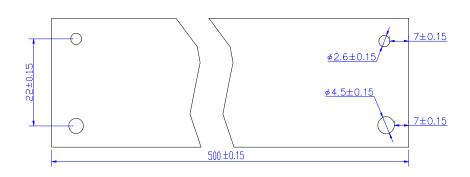




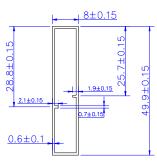
FIG.7: Test circuit for inductive and resistive loads to IEC-61000-4-5 standards.




ORDERING INFORMATION

Order code	Voltage V _{DRM} /V _{RRM} (V)	IGT(mA)	Package	Base qty. (pcs)	Delivery mode
EVT40UF -800BW	800	50	TO-3PF	30	Tube




PACKAGE MECHANICAL DATA

DELIVERY MODE

PACKAGE	OUTLINE	TUBE (PCS)	INNER BOX (PCS)	PER CARTON
TO-3PF	TUBE	30	600	3000

Disclaimer

EVVOSEMI ("EVVO") reserves the right to make corrections, enhancements, improvements, and other changes to its products and services at any time, and to discontinue any product or service without notice.

EVVO warrants the performance of its hardware products to the specifications applicable at the time of sale in accordance with its standard warranty. Testing and other quality control techniques are used as deemed necessary by EVVO to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Customers should obtain and confirm the latest product information and specifications before final design, purchase, or use. EVVO makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does EVVO assume any liability for application assistance or customer product design. EVVO does not warrant or accept any liability for products that are purchased or used for any unintended or unauthorized application.

EVVO products are not authorized for use as critical components in life support devices or systems without the express written approval of EVVOSEMI.

The EVVO logo and EVVOSEMI are trademarks of EVVOSEMI or its subsidiaries in relevant jurisdictions. EVVO reserves the right to make changes without further notice to any products herein.