

ESD

TVS

MOS

LDO

Diode

Sensor

DC-DC

Product Specification

Domestic Part Number	IRFR220N-T1
Overseas Part Number	IRFR220N
▶ Equivalent Part Number	IRFR220N

"T1" means TO-252

General Description

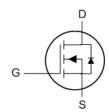
The IRFR220N is the highest performance trench N-Ch MOSFET with extreme high cell density, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications.

The IRFR220N meet the RoHS and Green Product requirement , 100% EAS guaranteed with full function reliability approved.

Features

- Advanced high cell density Trench technology
- Super Low Gate Charge
- Excellent Cdv/dt effect decline
- Green Device Available

Product Summery


BVDSS	RDSON	ID
200V	0.21Ω	9A

Applications

- High Frequency Point-of-Load Synchronous Buck Converter
- Networking DC-DC Power System
- Load Switch

TO-252 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units	
V_{DS}	Drain-Source Voltage	200	V	
V_{GS}	Gate-Source Voltage	±30	V	
I _D @T _C =25℃	Continuous Drain Current, V _{GS} @ 10V ¹	9	Α	
I _D @T _C =100℃	Continuous Drain Current, V _{GS} @ 10V ¹	3.13	А	
I _D @T _A =25℃	Continuous Drain Current, V _{GS} @ 10V ¹	9	Α	
I _D @T _A =70°C	Continuous Drain Current, V _{GS} @ 10V ¹	5.8	А	
I _{DM}	Pulsed Drain Current ²	36	Α	
EAS	Single Pulse Avalanche Energy ³	320	mJ	
I _{AS}	Avalanche Current	9	Α	
P _D @T _C =25℃	Total Power Dissipation ³	83	W	
P _D @T _c =100°C	Total Power Dissipation ³	47	W	
T _{STG}	Storage Temperature Range	-55 to 150	$^{\circ}$	
T_J	Operating Junction Temperature Range	-55 to 150	$^{\circ}$	

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
R _{0JA}	Thermal Resistance Junction-ambient ¹		30	°C/W
$R_{ heta JC}$	Thermal Resistance Junction-Case ¹		1.6	°C/W

Electrical Characteristics (T_J=25 C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	200			V
$\triangle BV_{DSS}/\triangle T_{J}$	BVDSS Temperature Coefficient	Reference to 25°C , I _D =1mA		0.25		V/°C
В	2 Duti Dui 2	V _{GS} =10V , I _D =4.5A		0.21	0.25	Ω
R _{DS(ON)}	Static Drain-Source On-Resistance ²	V _{GS} =6.0V , I _D =3.6A		0.26	0.29	Ω
$V_{GS(th)}$	Gate Threshold Voltage	V _{GS} =V _{DS} . In =250uA	1.0	1.8	2.5	V
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	V _{GS} -V _{DS} , I _D -250uA		-4.63		mV/℃
	Drain-Source Leakage Current	V _{DS} =200V , V _{GS} =0V , T _J =25℃			1	uA
I _{DSS}	Diain-Source Leakage Current	V _{DS} =160V , V _{GS} =0V , T _J =125℃			10	
I _{GSS}	Gate-Source Leakage Current	$V_{GS}=\pm30V$, V_{DS} =0V			±100	nA
gfs	Forward Transconductance	V _{DS} =30V , I _D =4.5A		0.21		S
R_g	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		2	4	Ω
Q_g	Total Gate Charge (10V)	V _{DS} =160V , V _{GS} =10V , I _D =9A		11.8		
Q_gs	Gate-Source Charge			2.36		nC
Q_{gd}	Gate-Drain Charge			3.98		
$T_{d(on)}$	Turn-On Delay Time			10.33		
T _r	Rise Time	V _{DD} =100V , V _{GS} =10V ,		10.7		
T _{d(off)}	Turn-Off Delay Time	R_G =10 Ω I_D =9A R_L =10 Ω		29.1		- ns
T _f	Fall Time			11.1		
C _{iss}	Input Capacitance	V _{DS} =25V , V _{GS} =0V , f=1MHz		509		
C _{oss}	Output Capacitance			51.2		pF
C _{rss}	Reverse Transfer Capacitance			3.2		

Guaranteed Avalanche Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
EAS	Single Pulse Avalanche Energy ⁵	V _{DD} =25V , L=0.1mH , I _{AS} =5A		320		mJ

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current ^{1,6}	V _G =V _D =0V , Force Current			9	Α
I _{SM}	Pulsed Source Current ^{2,6}	V _G =V _D =UV , Force Current			36	Α
$V_{ ext{SD}}$	Diode Forward Voltage ²	V _{GS} =0V , I _S =5A , T _J =25°C			1.4	٧
t _{rr}	Reverse Recovery Time			201		nS
Q _{rr}	Reverse Recovery Charge	IF=5A , dI/dt=100A/ μ s , T $_{J}$ =25 $^{\circ}$ C		663		nC

Note:

- 1.The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper,t<10sec.
- 2.The data tested by pulsed , pulse width $\,\leq\,300\text{us}$, duty cycle $\,\leq\,2\%$
- 3. The EAS data shows Max. rating . The test condition is V_{DD} =25V, V_{GS} =10V, L=0.1mH, I_{AS}=5A
- 5.The Min. value is 100% EAS tested guarantee.
- 6. The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

Typical Characteristics

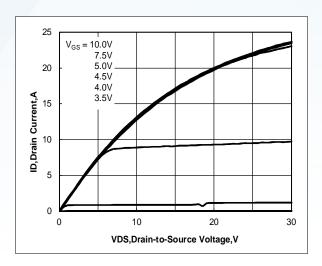


Figure 1. Output Characteristics

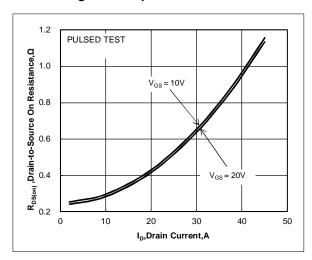


Figure 3. Drain-to-Source On Resistance vs.

Drain Current and Gate Voltage

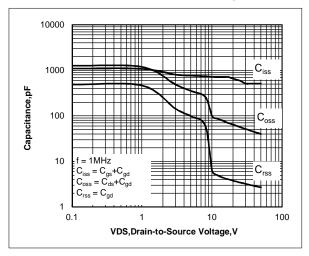


Figure 5. Capacitance Characteristics

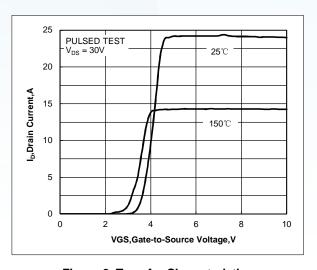


Figure 2. Transfer Characteristics

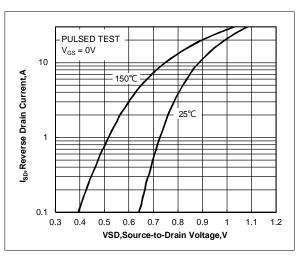


Figure 4. Body Diode Forward Voltage vs.
Source Current and Temperature

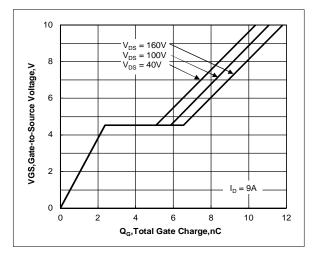


Figure 6. Gate Charge Characteristics

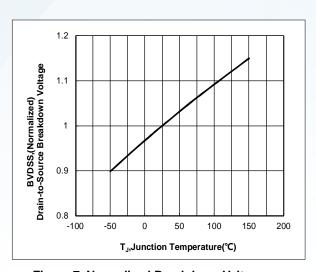


Figure 7. Normalized Breakdown Voltage vs.

Junction Temperature

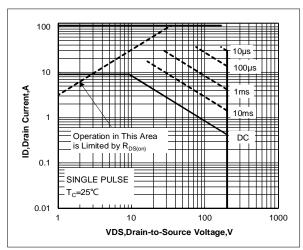


Figure 9. Maximum Safe Operating Area for IRFR220N

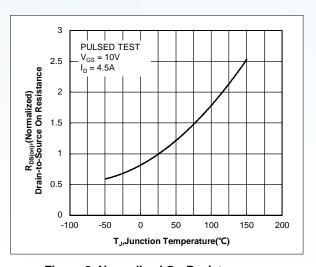


Figure 8. Normalized On Resistance vs.

Junction Temperature

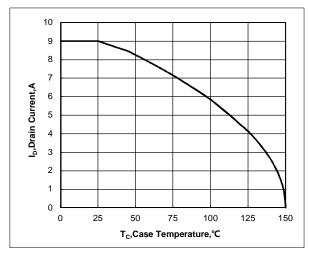


Figure 10. Maximum Continuous Drain Current vs.

Case Temperature

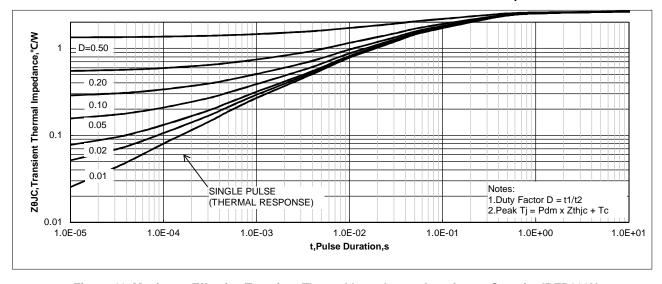


Figure 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case for IRFR220N

Disclaimer

EVVOSEMI ("EVVO") reserves the right to make corrections, enhancements, improvements, and other changes to its products and services at any time, and to discontinue any product or service without notice.

EVVO warrants the performance of its hardware products to the specifications applicable at the time of sale in accordance with its standard warranty. Testing and other quality control techniques are used as deemed necessary by EVVO to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Customers should obtain and confirm the latest product information and specifications before final design, purchase, or use. EVVO makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does EVVO assume any liability for application assistance or customer product design. EVVO does not warrant or accept any liability for products that are purchased or used for any unintended or unauthorized application.

EVVO products are not authorized for use as critical components in life support devices or systems without the express written approval of EVVOSEMI.

The EVVO logo and EVVOSEMI are trademarks of EVVOSEMI or its subsidiaries in relevant jurisdictions. EVVO reserves the right to make changes without further notice to any products herein.