

ESD

TVS

MOS

LDO

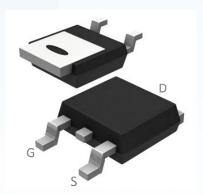
Diode

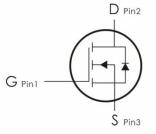
Sensor

DC-DC

Product Specification

Domestic Part Number	IRFR2407
Overseas Part Number	IRFR2407
▶ Equivalent Part Number	IRFR2407




Description:

This N-Channel MOSFET uses advanced SGT technology and design to provide excellent $R_{DS(on)}$ with low gate charge. It can be used in a wide variety of applications.

Features:

- 1) V_{DS} =80V, I_D =45A, $R_{DS(ON)}$ <20m Ω @ V_{GS} =10V
- 2) Low gate charge.
- 3) Green device available.
- 4) Advanced high cell denity trench technology for ultra low R_{DS(ON)}.
- 5) Excellent package for good heat dissipation.

Absolute Maximum Ratings: (T_c=25℃ unless otherwise noted)

Symbol	Parameter	Ratings	Units
V _{DS}	Drain-Source Voltage	80	V
V _{GS}	Gate-Source Voltage	±20	V
I _D	Continuous Drain Current ¹⁾	45	А
I _{D, pulse}	Pulsed drain current ²⁾	135	А
l _s	Continuous diode forward current ¹⁾	45	A
I _{S, pulse}	Diode pulsed current ²⁾	135	А
P _D	Continuous-Source Current ³⁾	75	W
E _{AS}	Single pulsed avalanche energy ⁵⁾	22	mJ
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to +150	°C

Thermal Characteristics:

Symbol	Parameter	Max	Units
R _{OJC}	Thermal Resistance, Junction to Case	1.67	
R _{OJA}	Thermal Resistance, Junction to Ambient ⁴⁾	62	°C/W

Electrical Characteristics: (T_c=25℃ unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
Off Characteristics							
BV _{DSS}	Drain-Sourtce Breakdown Voltage	V _{GS} =0V,I _D =250 μ A	80			٧	
I _{DSS}	Zero Gate Voltage Drain Current	V _{GS} =0V, V _{DS} =80V			1	μА	
I _{GSS}	Gate-Source Leakage Current	V _{GS} =±20V, V _{DS} =0A			±100	nA	
R _G	Gate resistance	f=1 MHz, Open drain		2.9		Ω	
On Characteristics							
V _{GS(th)}	GATE-Source Threshold Voltage	V _{GS} =V _{DS} , I _D =250 μ A	1.0		2.5	V	
R _{DS(ON)}		V _{GS} =10V,I _D =12A		13	20	\mathbf{m} Ω	
	Drain-Source On Resistance	V _{GS} =4.5V,I _D =9A		17	24	m $Ω$	
Dynamic Characterist	ics						
C _{iss}	Input Capacitance			760			
Coss	Output Capacitance	V _{DS} =25V, V _{GS} =0V, f=1MHz		340		pF	
C _{rss}	Reverse Transfer Capacitance			27			
Switching Characteris	tics						
t _{d(on)}	Turn-On Delay Time			16		ns	
t _r	Rise Time	V _{Ds} =40V, I _D =20A,		4		ns	
t _{d(off)}	Turn-Off Delay Time	V_{GS} =10V, R_{G} =2 Ω		28		ns	
t _f	Fall Time			5.1		ns	
Qg	Total Gate Charge			12		nC	
Q _{gs}	Gate-Source Charge	V _{GS} =10V, V _{DS} =40V,		2.2		nC	
Q _{gd}	Gate-Drain "Miller" Charge	I _D =20A		2.5		nC	
$V_{plateau}$	Gate plateau voltage			3.2		V	
Drain-Source Diode Characteristics							

V _{SD}	Source-Drain Diode Forward Voltage	V _{GS} =0V,I _S =20A	 	1.3	V
trr	Reverse Recovery Time		30		Ns
qrr	Reverse Recovery Charge	V _R =40V,I _S =20 A	 19		uc
Irrm	Peak reverse recovery current	dl _{SD} /dt = 100 A/ μ s	 1		А

Notes:

- 1) Calculated continuous current based on maximum allowable junction temperature.
- 2) Repetitive rating; pulse width limited by max. junction temperature.
- 3) Pd is based on max. junction temperature, using junction-case thermal resistance.
- 4) The value of $R_{\theta JA}$ is measured with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_a =25 °C.
- 5) V_{DD} =50 V, V_{GS} =10 V, L=0.3 mH, starting T_j =25 °C.

Typical Characteristics: (T_c=25°C unless otherwise noted)

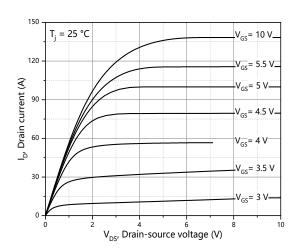


Figure 1. Typ. output characteristics

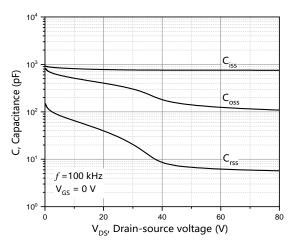


Figure 3. Typ. capacitances

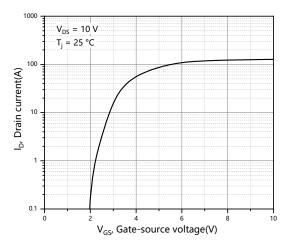


Figure 2. Typ. transfer characteristics

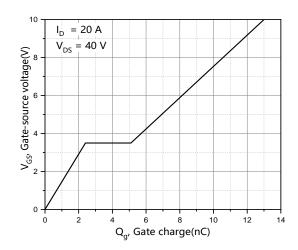


Figure 4. Typ. gate charge

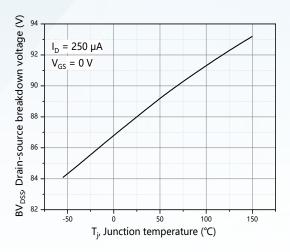


Figure 5. Drain-source breakdown voltage

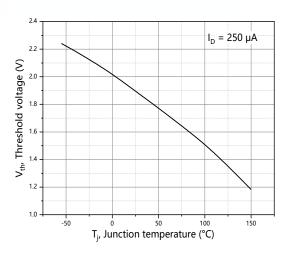


Figure 7. Threshold voltage

Figure 9. Drain-source on-state resistance

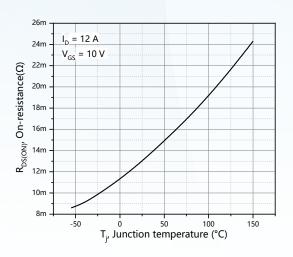


Figure 6. Drain-source on-state resistance

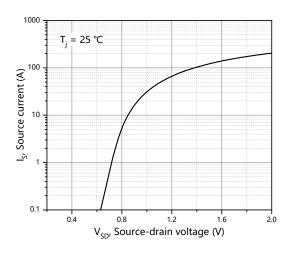


Figure 8. Forward characteristic of body diode

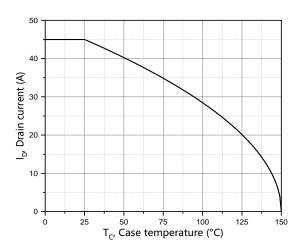


Figure 10. Drain current

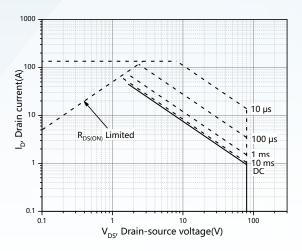


Figure 11. Safe operation area Tc=25°C

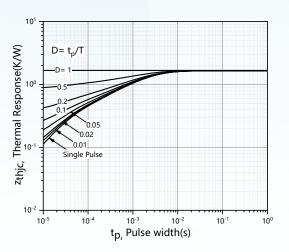


Figure 12. Max. transient thermal impedance

Disclaimer

EVVOSEMI ("EVVO") reserves the right to make corrections, enhancements, improvements, and other changes to its products and services at any time, and to discontinue any product or service without notice.

EVVO warrants the performance of its hardware products to the specifications applicable at the time of sale in accordance with its standard warranty. Testing and other quality control techniques are used as deemed necessary by EVVO to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Customers should obtain and confirm the latest product information and specifications before final design, purchase, or use. EVVO makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does EVVO assume any liability for application assistance or customer product design. EVVO does not warrant or accept any liability for products that are purchased or used for any unintended or unauthorized application.

EVVO products are not authorized for use as critical components in life support devices or systems without the express written approval of EVVOSEMI.

The EVVO logo and EVVOSEMI are trademarks of EVVOSEMI or its subsidiaries in relevant jurisdictions. EVVO reserves the right to make changes without further notice to any products herein.