















**ESD** 

TVS

MOS

LDO

Diode

Sensor

DC-DC

# **Product Specification**

| Domestic Part Number     | IRFS4410Z |
|--------------------------|-----------|
| Overseas Part Number     | IRFS4410Z |
| ▶ Equivalent Part Number | IRFS4410Z |





# **General Description**

IRFS4410Z use advanced SGT MOSFET technology to provide low RDS(ON), low gate charge, fast switching and excellent avalanche characteristics.

This device is specially designed to get better ruggedness and suitable to use in

#### **Features**

Low RDS(on) & FOM

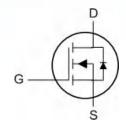
Extremely low switching loss

Excellent stability and uniformity or Invertors

#### 100V N-SGT Enhancement Mode MOSFET

# **Applications**

Consumer electronic power supply


Motor control

Synchronous-rectification

Isolated DC

Synchronous-rectification applications

# **TO-263-2L Pin Configuration**



### **Absolute Maximum Ratings** at T<sub>j</sub>=25°C unless otherwise noted

| Parameter                                                      | Symbol           | Value      | Unit |
|----------------------------------------------------------------|------------------|------------|------|
| Drain source voltage                                           | V <sub>DS</sub>  | 100        | V    |
| Gate source voltage                                            | V <sub>G</sub> s | ±20        | V    |
| Continuous drain current <sup>1)</sup> , T <sub>C</sub> =25 °C | lo               | 80         | Α    |
| Pulsed drain current <sup>2)</sup> , T <sub>C</sub> =25 ℃      | D, pulse         | 180        | Α    |
| Power dissipation³), T <sub>C</sub> =25 ℃                      | P <sub>D</sub>   | 125        | W    |
| Single pulsed avalanche energy <sup>5)</sup>                   | Eas              | 100        | mJ   |
| Operation and storage temperature                              | Tstg, Tj         | -55 to 150 | °C   |
| Thermal resistance, junction-case                              | Rөлс             | 1          | °C/W |
| Thermal resistance, junction-ambient <sup>4)</sup>             | Rеја             | 62         | °C/W |



### **Electrical Characteristics** at T<sub>i</sub>=25 °C unless otherwise specified

| Parameter                        | Symbol          | Min. | Тур.  | Max. | Unit | Test condition                                                        |  |
|----------------------------------|-----------------|------|-------|------|------|-----------------------------------------------------------------------|--|
| Drain-source breakdown voltage   | BVDSS           | 100  |       |      | V    | V <sub>GS</sub> =0 V, I <sub>D</sub> =250 μA                          |  |
| Gate threshold voltage           | VGS(th)         | 1.0  |       | 2.5  | V    | V <sub>DS</sub> =V <sub>GS</sub> , I <sub>D</sub> =250 μA             |  |
| Drain-source on-state resistance | RDS(ON)         |      | 8     | 10   | mΩ   | V <sub>GS</sub> =10 V, I <sub>D</sub> =10 A                           |  |
| Drain-source on-state resistance | RDS(ON)         |      | 10    | 12   | mΩ   | V <sub>GS</sub> =4.5 V, I <sub>D</sub> =10 A                          |  |
| Gate-source leakage current      | IGSS            |      |       | 100  | nA   | V <sub>GS</sub> =20 V                                                 |  |
|                                  |                 |      |       | -100 |      | V <sub>GS</sub> =-20 V                                                |  |
| Drain-source leakage current     | IDSS            |      |       | 1    | μΑ   | V <sub>DS</sub> =100 V, V <sub>GS</sub> =0 V                          |  |
| Input capacitance                | Ciss            |      | 2604  |      | рF   | V <sub>GS</sub> =0 V, V <sub>DS</sub> =50 V, f=1<br>MHz               |  |
| Output capacitance               | Coss            |      | 361.2 |      | рF   |                                                                       |  |
| Reverse transfer capacitance     | Crss            |      | 6.5   |      | рF   |                                                                       |  |
| Turn-on delay time               | td(on)          |      | 20.6  |      | ns   | $V_{GS}$ =10 V, $V_{DS}$ =50 V, $R_{G}$ =2.2 $\Omega$ , $I_{D}$ =25 A |  |
| Rise time                        | t <sub>r</sub>  |      | 5     |      | ns   |                                                                       |  |
| Turn-off delay time              | td(off)         |      | 51.8  |      | ns   |                                                                       |  |
| Fall time                        | t <sub>f</sub>  |      | 9     |      | ns   |                                                                       |  |
| Total gate charge                | Qg              |      | 49.9  |      | nC   |                                                                       |  |
| Gate-source charge               | Q <sub>gs</sub> |      | 6.5   |      | nC   | I <sub>D</sub> =25 A,                                                 |  |
| Gate-drain charge                | Qgd             |      | 12.4  |      | nC   | V <sub>DS</sub> =50 V,<br>V <sub>GS</sub> =10 V                       |  |
| Gate plateau voltage             | Vplateau        |      | 3.4   |      | V    |                                                                       |  |
| Diode forward current            | Is              |      |       | 60   |      |                                                                       |  |
| Pulsed source current            | ISP             |      |       | 180  | Α    | VGS <vth< td=""></vth<>                                               |  |
| Diode forward voltage            | VSD             |      |       | 1.3  | V    | I <sub>S</sub> =12 A, V <sub>GS</sub> =0 V                            |  |
| Reverse recovery time            | trr             |      | 60.4  |      | ns   | I <sub>S</sub> =12 A, di/dt=100 A/μs                                  |  |
| Reverse recovery charge          | Q <sub>rr</sub> |      | 106.1 |      | nC   |                                                                       |  |
| Peak reverse recovery current    | Irrm            |      | 3     |      | Α    |                                                                       |  |

#### Note

- 1) Calculated continuous current based on maximum allowable junction temperature.
- 2) Repetitive rating; pulse width limited by max. junction temperature.
- 3) Pd is based on max. junction temperature, using junction-case thermal resistance.
- 4) The value of  $R_{\theta JA}$  is measured with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with  $T_a$ =25 °C.
- 5)  $V_{DD}$ =50 V,  $R_G$ =25  $\Omega$ , L=0.3 mH, starting  $T_j$ =25  $^{\circ}$ C.



# **Electrical Characteristics Diagrams**

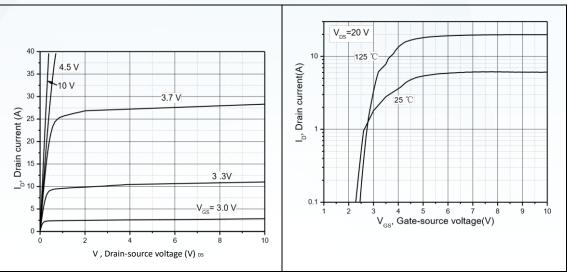



Figure 1, Typ. output characteristics

Figure 2, Typ. transfer characteristics

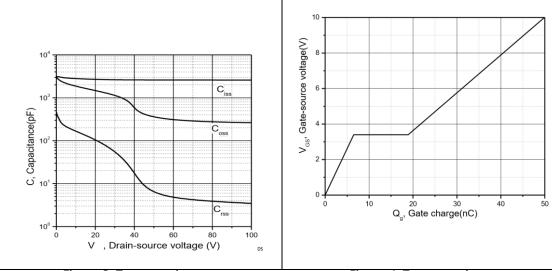



Figure 3, Typ. capacitances

Drain-source voltage (V)

112110108

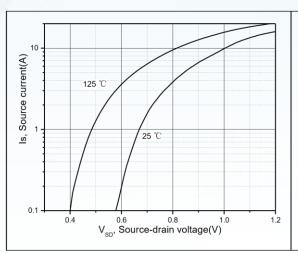

102

Figure 5, Drain-source breakdown voltage

 $_{\text{-20}}$  0 20 40 60 80 100 120 140 160 T $_{\text{J}}$ , Juntion temperature (°C )

Figure 6, Drain-source on-state resistance





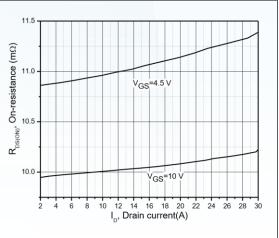



Figure 7, Forward characteristic of body diode

Figure 8, Drain-source on-state resistance

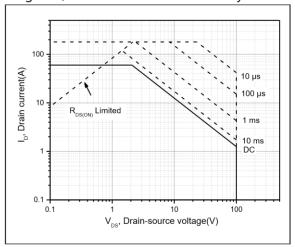
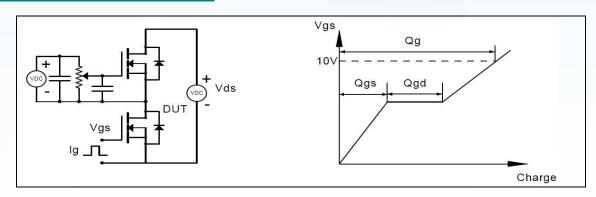



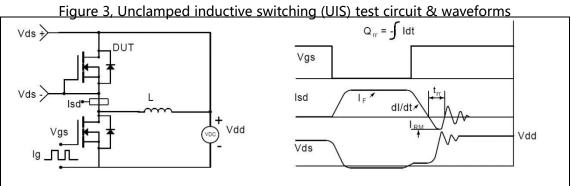
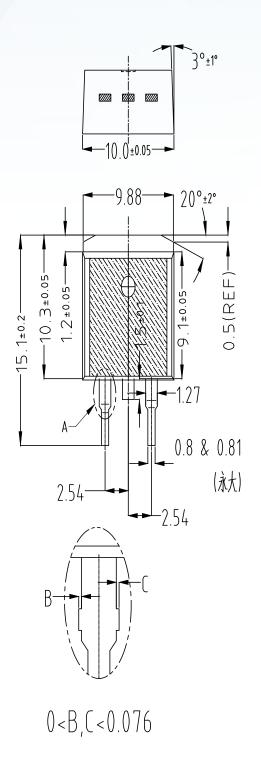

Figure 9, Safe operation area  $T_C=25\,^{\circ}C$ 

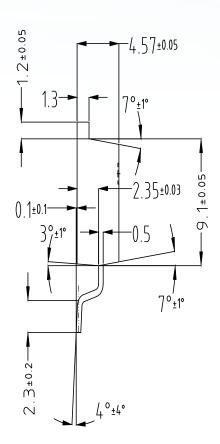


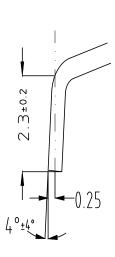
### **Test circuits and waveforms**







Figure 4, Diode reverse recovery test circuit & waveforms




# TO-263 Package Outline Dimensions

Package Outline Dimensions (Units: mm)









# Disclaimer

EVVOSEMI ("EVVO") reserves the right to make corrections, enhancements, improvements, and other changes to its products and services at any time, and to discontinue any product or service without notice.

EVVO warrants the performance of its hardware products to the specifications applicable at the time of sale in accordance with its standard warranty. Testing and other quality control techniques are used as deemed necessary by EVVO to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Customers should obtain and confirm the latest product information and specifications before final design, purchase, or use. EVVO makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does EVVO assume any liability for application assistance or customer product design. EVVO does not warrant or accept any liability for products that are purchased or used for any unintended or unauthorized application.

EVVO products are not authorized for use as critical components in life support devices or systems without the express written approval of EVVOSEMI.

The EVVO logo and EVVOSEMI are trademarks of EVVOSEMI or its subsidiaries in relevant jurisdictions. EVVO reserves the right to make changes without further notice to any products herein.