

ESD

TVS

MOS

LDO

Diode

Sensor

DC-DC

Product Specification

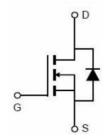
Domestic Part Number	IPD60R360P7
Overseas Part Number	IPD60R360P7
▶ Equivalent Part Number	IPD60R360P7

Description

Super-junction power MOSFET is a revolutionary technology for high voltage power MOSFET, designed according to the SJ principle. The resulting device has extremely low on resistance, making it especially suitable for applications which require superior power density and outstanding efficiency.

Features

- Very low FOM RDS(on)×Qg
- 100% UIS tested
- RoHS compliant


Applications

- Power factor correction (PFC).
- Switched mode power supplies (SMPS).
- Uninterrupted power supply (UPS).

Product Summary

 $\begin{array}{lll} V_{DS} \textcircled{@} \ T_{j,25^{\circ}} & 650V \\ R_{DS(on),max} & 0.38 \, \Omega \\ I_{D} & 11A \\ Q_{g,typ} & 19.2nC \end{array}$

TO-252-2L Pin Configuration

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit	
Drain-Source Voltage	V _{DSS}	650	V	
Continuous drain current (T _C = 25°C)	I _D	11	Α	
(T _C = 100°C)		7	Α	
Pulsed drain current 1)	I _{DM}	33	Α	
Gate-Source voltage	V _{GSS}	±30	V	
Avalanche energy, single pulse 2)	E _{AS}	210	mJ	
Avalanche current, repetitive 3)	I _{AR}	1.6	Α	
Power Dissipation TO-263 (T _C = 25°C)		125	W	
- Derate above 25°C	P _D	1	W/°C	
Operating and Storage Temperature Range	T _J , T _{STG}	-55 to +150	°C	
Continuous diode forward current	Is	11	Α	
Diode pulse current	I _{S,pulse}	33	Α	

Thermal Characteristics

Parameter	Symbol	Value	Unit
		TO-263	
Thermal Resistance, Junction-to-Case	R _{BJC}	1	°CMV
Thermal Resistance, Junction-to-Ambient	R _{BJA}	62.5	°CMV
Soldering temperature, wave soldering only allowed at leads. (1.6mm from case for 10s)	T _{sold}	260	°C

Electrical Characteristics T_c = 25°C unless otherwise noted

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Static characteristics	•		•			
Drain-source breakdown voltage	BV _{DSS}	V _{GS} =0 V, I _D =250uA	650	-	-	V
Gate threshold voltage	V _{GE(th)}	V _{GS} =V _{DS} , I _D =250uA	2.0	3.0	4.0	V
Drain cut-off current	I _{DSS}	V _{DS} =650 V, V _{GS} =0 V,				μА
		T _j = 25°C	-	-	1	
		T _j = 125°C	- 1	10		
Gate leakage current, Forward	I _{GSSF}	V _{GS} =30 V, V _{DS} =0 V	-	-	100	nA
Gate leakage current, Reverse	I _{GSSR}	V _{GS} =-30 V, V _{DS} =0 V	-	-	-100	nA
Drain-source on-state resistance	R _{DS(on)}	V _{GS} =10 V, I _D =5.5 A	21			
		T _j = 25°C	-	330	380	mΩ
			-			
Dynamic characteristics						
Input capacitance	Ciss	V _{DS} = 100 V, V _{GS} = 0 V,	-	852	-	
Output capacitance	Coss	f = 1MHz	¥1	37	-	pF
Reverse transfer capacitance	C _{rss}]	-	2.0	-	
Turn-on delay time	t _{d(on)}	V _{DD} = 400V, I _D = 5.5A	-1	16	-	
Rise time	t _r	$R_G = 25\Omega$, $V_{GS}=10V$	-	35	-	ns
Turn-off delay time	t _{d(off)}	1	-	78	-	
Fall time	t _f	1	-	39.5	-	
Gate charge characteristics					ta v	
Gate to source charge	Q _{gs}	V _{DD} =520 V, I _D =5.5A,	-	3.1	-	
Gate to drain charge	Q_{gd}	V _{GS} =0 to 10 V	-	8.2	-	nC
Gate charge total	Qg	1	-	19.2	-	
Gate plateau voltage	V _{plateau}	1	-	5.5	-	V
Reverse diode characteristics		•			I.	
Diode forward voltage	V _{SD}	V _{GS} =0 V, I _S =11A	-	-	1.4	V
Reverse recovery time	t _{rr}	V _R =400 V, I _F =5.5A,	-	310	-	ns
Reverse recovery charge	Q _{rr}	dI _F /dt=100 A/μs	H	2.8	-	μC
Peak reverse recovery current	I _m	1		16	-	Α

Notes:

^{1.} Limited by maximum junction temperature, maximum duty cycle is 0.75.

^{2.} I_{AS} = 3A, V_{DD} = 50V, Starting T_j = 25°C.

Electrical Characteristics Diagrams

Figure 1. Output Characteristics

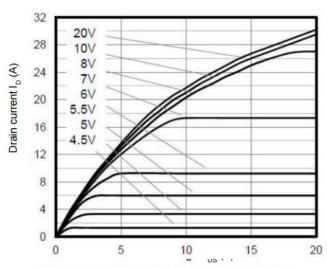


Figure 3. On-Resistance vs. Drain Current

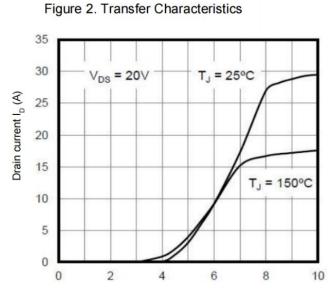


Figure 4. Capacitance Characteristics

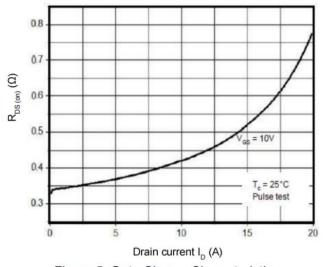
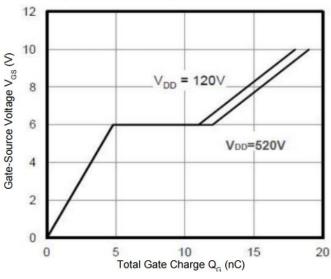
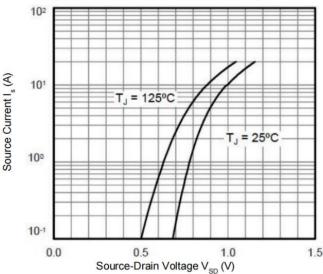




Figure 5. Gate Charge Characteristics

10³
(d) and a contribution of the contributi

Figure 6. Body Diode Forward Voltage

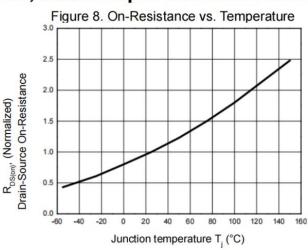
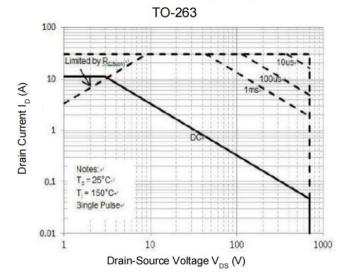
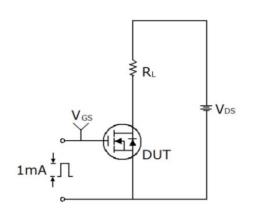
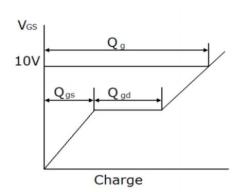
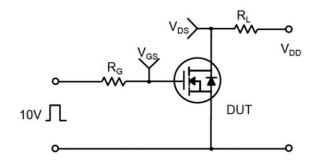



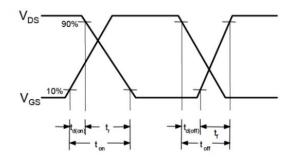
Figure 9. Maximum Safe Operating Area

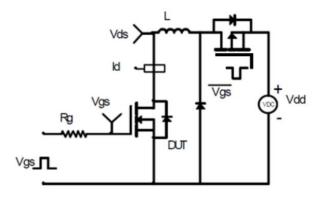


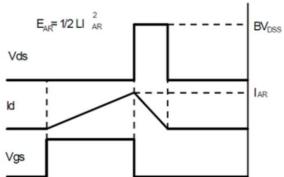


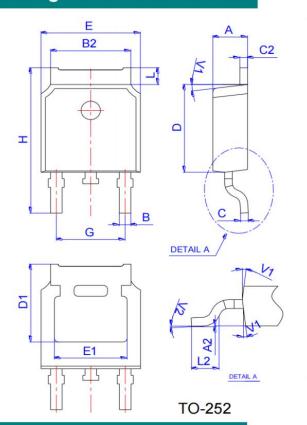
Test Circuits

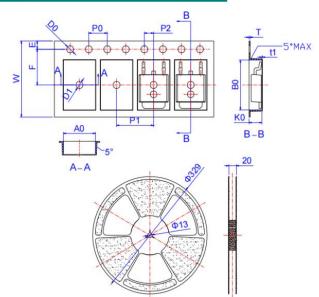

N-channel 650V, 11A, 0.38Ω Super-Junction Power MOSFET


Gate Charge Test Circuit & Waveform




Switching Test Circuit & Waveform


Unclamped Inductive Switching Test Circuit & Waveform



Package Mechanical Data

	Dimensions							
Ref.	Millimeters			Inches				
	Min.	Typ.	Max.	Min.	Тур.	Max.		
Α	2.10		2.50	0.083		0.098		
A2	0		0.10	0		0.004		
В	0.66		0.86	0.026		0.034		
B2	5.18		5.48	0.202		0.216		
С	0.40		0.60	0.016		0.024		
C2	0.44		0.58	0.017		0.023		
D	5.90		6.30	0.232		0.248		
D1	5.30REF			0.209REF				
E	6.40		6.80	0.252		0.268		
E1	4.63			0.182				
G	4.47		4.67	0.176		0.184		
Н	9.50		10.70	0.374		0.421		
L	1.09		1.21	0.043		0.048		
L2	1.35		1.65	0.053		0.065		
V1		7°			7°			
V2	0°		6°	0°		6°		

Reel Spectification-TO-252

	Dimensions						
Ref.		Millimete	rs	Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
W	15.90	16.00	16.10	0.626	0.630	0.634	
Е	1.65	1.75	1.85	0.065	0.069	0.073	
F	7.40	7.50	7.60	0.291	0.295	0.299	
D0	1.40	1.50	1.60	0.055	0.059	0.063	
D1	1.40	1.50	1.60	0.055	0.059	0.063	
P0	3.90	4.00	4.10	0.154	0.157	0.161	
P1	7.90	8.00	8.10	0.311	0.315	0.319	
P2	1.90	2.00	2.10	0.075	0.079	0.083	
A0	6.85	6.90	7.00	0.270	0.271	0.276	
B0	10.45	10.50	10.60	0.411	0.413	0.417	
K0	2.68	2.78	2.88	0.105	0.109	0.113	
Т	0.24		0.27	0.009		0.011	
t1	0.10			0.004			
10P0	39.80	40.00	40.20	1.567	1.575	1.583	

Disclaimer

EVVOSEMI ("EVVO") reserves the right to make corrections, enhancements, improvements, and other changes to its products and services at any time, and to discontinue any product or service without notice.

EVVO warrants the performance of its hardware products to the specifications applicable at the time of sale in accordance with its standard warranty. Testing and other quality control techniques are used as deemed necessary by EVVO to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Customers should obtain and confirm the latest product information and specifications before final design, purchase, or use. EVVO makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does EVVO assume any liability for application assistance or customer product design. EVVO does not warrant or accept any liability for products that are purchased or used for any unintended or unauthorized application.

EVVO products are not authorized for use as critical components in life support devices or systems without the express written approval of EVVOSEMI.

The EVVO logo and EVVOSEMI are trademarks of EVVOSEMI or its subsidiaries in relevant jurisdictions. EVVO reserves the right to make changes without further notice to any products herein.