ESD TVS MOS LDO Diode Sensor DC-DC # **Product Specification** | Domestic Part Number | IRF1018E | |--|----------| | Overseas Part Number | IRF1018E | | ▶ Equivalent Part Number | IRF1018E | ## Description The IRF1018E is the high cell density trenched N-ch MOSFETs, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications. The IRF1018E meet the RoHS and Green Product requirement, 100% EAS guaranteed with full function reliability approved. - ★ 100% EAS Guaranteed - ★ Green Device Available - ★ Super Low Gate Charge - ★ Excellent CdV/dt effect decline - ★ Advanced high cell density Trench technology ## **Product Summary** Vps=60V lp=80A $Ros(ON) = 6.5 m\Omega@Vgs = 10 V$ # TO-220-3L Pin Configuration #### Absolute Maximum Ratings | Parameter | Symbol | Value | Unit | |--|----------------|------------|------| | Drain source voltage | VDS | 60 | V | | Gate source voltage | VGS | ±20 | V | | Continuous drain current ¹⁾ | ID | 80 | А | | Pulsed drain current ²⁾ | ID, pulse | 180 | А | | Power dissipation ³⁾ | P _D | 125 | w | | Single pulsed avalanche energy ⁴⁾ | EAS | 30 | mJ | | Operation and storage temperature | Tstg, Tj | -55 to 150 | °C | | Thermal resistance, junction-case | RØJC | 1 | °C/W | | Thermal resistance, junction-ambient ⁵⁾ | ROJA | 62 | °C/W | ## Electrical Characteristics (TJ=25°C unless otherwise specified) | Symbol | Parameter | Test condition | Min. | Тур. | Max. | Unit | |-----------------|----------------------------------|--|------|--------|------|------| | BVDSS | Drain-source breakdown voltage | V _{GS} =0 V, I _D =250 μA | 60 | 71 | | V | | VGS(th) | Gate threshold voltage | V _{DS} =V _{GS} , I _D =250 μA | 2.0 | 3.0 | 4 | V | | Rds(on) | Drain-source on-state resistance | V _{GS} =10 V, I _D =20 A | | 6.5 | 8 | mΩ | | | | V _{GS} =20 V | | | 100 | nA | | lgss | IGSS Gate-source leakage current | V _{GS} =-20 V | | | -100 | | | loss | Drain-source leakage current | V _{DS} =40 V, V _{GS} =0 V | | | 1 | μA | | Ciss | Input capacitance | V _{GS} =0 V, V _{DS} =50 V,
f=100 kHz | | 1182.1 | | pF | | Coss | Output capacitance | | | 199.5 | | pF | | Crss | Reverse transfer capacitance | | | 4.1 | | pF | | td(on) | Turn-on delay time | $V_{GS}=10 \text{ V},$ $V_{DS}=50 \text{ V},$ $R_{G}=2 \Omega,$ $I_{D}=10 \text{ A}$ | | 17.9 | | ns | | t _r | Rise time | | | 4.0 | | ns | | td(off) | Turn-off delay time | | 27 | 34.9 | | ns | | t _f | Fall time | | | 5.5 | | ns | | Qg | Total gate charge | I _D =10 A,
- V _{DS} =50 V,
- V _{GS} =10 V | | 18.4 | | nC | | Q _{gs} | Gate-source charge | | | 3.3 | | nC | | Qgd | Gate-drain charge | | 3 | 3.1 | | nC | | Vplateau | Gate plateau voltage | | | 2.8 | | V | | Is | Diode forward current | - VGS < Vth | | | 60 | A | | Isp | Pulsed source current | | | | 180 | | | VsD | Diode forward voltage | I _S =20 A, V _{GS} =0 V | | | 1.3 | V | | trr | Reverse recovery time | I _s =10 A, di/dt=100
A/μs | | 41.8 | | ns | | Q _{rr} | Reverse recovery charge | | | 36.1 | | nC | | Irrm | Peak reverse recovery current | | | 1.4 | | A | #### Note - 1) Calculated continuous current based on maximum allowable junction temperature. - 2) Repetitive rating; pulse width limited by max. junction temperature. - 3) Pd is based on max. junction temperature, using junction-case thermal resistance. - 4) V_{DD} =50 V, R_G =50 Ω , L=0.3 mH, starting T_j =25 °C. - 5) The value of $R_{\theta JA}$ is measured with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_a =25 °C. # **Typical Performance Characteristics** Figure 1, Typ. output characteristics Figure 3, Typ. capacitances Figure 5, Drain-source breakdown voltage Figure 2, Typ. transfer characteristics Figure 4, Typ. gate charge Figure 6, Drain-source on-state resistance Figure 7, Forward characteristic of body diode Figure 9, Safe operation area $T_C=25\,^{\circ}C$ Fig.11 Unclamped Inductive Switching Waveform Figure 8, Drain-source on-state resistance Fig.10 Switching Time Waveform # Disclaimer EVVOSEMI ("EVVO") reserves the right to make corrections, enhancements, improvements, and other changes to its products and services at any time, and to discontinue any product or service without notice. EVVO warrants the performance of its hardware products to the specifications applicable at the time of sale in accordance with its standard warranty. Testing and other quality control techniques are used as deemed necessary by EVVO to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. Customers should obtain and confirm the latest product information and specifications before final design, purchase, or use. EVVO makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does EVVO assume any liability for application assistance or customer product design. EVVO does not warrant or accept any liability for products that are purchased or used for any unintended or unauthorized application. EVVO products are not authorized for use as critical components in life support devices or systems without the express written approval of EVVOSEMI. The EVVO logo and EVVOSEMI are trademarks of EVVOSEMI or its subsidiaries in relevant jurisdictions. EVVO reserves the right to make changes without further notice to any products herein.