

ESD

TVS

MOS

LDO

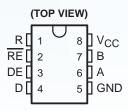
Diode

Sensor

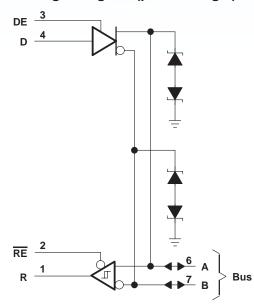
DC-DC

Product Specification

Domestic Part Number	SN75LBC184DR/ SN65LBC184DR
Overseas Part Number	SN75LBC184DR/ SN65LBC184DR
▶ Equivalent Part Number	SN75LBC184DR/ SN65LBC184DR


DIFFERENTIAL TRANSCEIVER WITH TRANSIENT VOLTAGE SUPPRESSION

- Integrated Transient Voltage Suppression
- ESD Protection for Bus Terminals Exceeds:
 - ±30 kV IEC 61000-4-2, Contact Discharge
 - $\pm 15~\text{kV}$ IEC 61000-4-2, Air-Gap Discharge
 - ±15 kV EIA/JEDEC Human Body Model Circuit Damage Protection of 400-W Peak
- (Typical) Per IEC 61000-4-5
- Controlled Driver Output-Voltage Slew Rates Allow Longer Cable Stub Lengths
- 250-kbps in Electrically Noisy Environments
- Open-Circuit Fail-Safe Receiver Design
- 1/4 Unit Load Allows for 128 Devices Connected on Bus
- Thermal Shutdown Protection
- Power-Up/-Down Glitch Protection
- Each Transceiver Meets or Exceeds the Requirements of TIA/EIA-485 (RS-485) and ISO/IEC 8482:1993(E) Standards
- Low Disabled Supply Current 300 μA Max
- Pin Compatible With SN75176
- Applications:
 - Industrial Networks
 - Utility Meters
 - Motor Control


description

The SN75LBC184 and SN65LBC184 are differential data line transceivers in the trade-standard footprint of the SN75176 with built-in protection against high-energy noise transients. This feature provides a substantial increase in reliability for better immunity to noise transients coupled to the data cable over most existing devices. Use of these circuits provides a reliable low-cost direct-coupled (with no isolation transformer) data line interface without requiring any external components.

The SN75LBC184 and SN65LBC184 can withstand overvoltage transients of 400-W peak (typical). The conventional combination wave called out in IEC 61000-4-5 simulates the overvoltage transient and models a unidirectional surge caused by overvoltages from switching and secondary lightning transients.

functional logic diagram (positive logic)

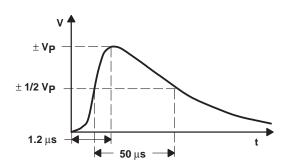
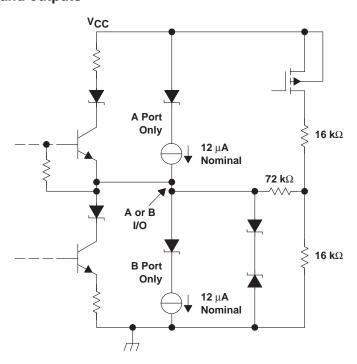


Figure 1. Surge Waveform — Combination Wave


description (continued)

A biexponential function defined by separate rise and fall times for voltage and current simulates the combination wave. The standard 1.2 μ s/50 μ s combination waveform is shown in Figure 1 and in the test description in Figure 15.

The device also includes additional desirable features for party-line data buses in electrically noisy environment applications including industrial process control. The differential-driver design incorporates slew-rate-controlled outputs sufficient to transmit data up to 250 kbps. Slew-rate control allows longer unterminated cable runs and longer stub lengths from the main backbone than possible with uncontrolled and faster voltage transitions. A unique receiver design provides a fail-safe output of a high level when the inputs are left floating (open circuit). The SN75LBC184 and SN65LBC184 receiver also includes a high input resistance equivalent to one-fourth unit load allowing connection of up to 128 similar devices on the bus.

The SN75LBC184 is characterized for operation from 0° C to 70° C. The SN65LBC184 is characterized from -40° C to 85° C.

schematic of inputs and outputs

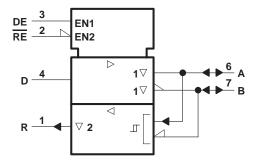
DRIVER FUNCTION TABLE

INPUT	ENABLE	OUTPUTS		
D	DE	Α	В	
Н	Н	Н	L	
L	Н	L	Н	
Χ	L	Z	Z	

H = high level, L = low level, ? = indeterminate, X = irrelevant, Z = high impedance (off)

RECEIVER FUNCTION TABLE

DIFFERENTIAL INPUTS	ENABLE	OUTPUT
A – B	RE	R
V _{ID} ≥ 0.2 V	L	Н
$-0.2 \text{ V} < \text{V}_{\text{ID}} < 0.2 \text{ V}$	L	?
V _{ID} ≤ −0.2 V	L	L
X	Н	Z
Open	Ĺ	Н


H = high level, L = low level, ? = indeterminate, X = irrelevant, Z = high impedance (off)

AVAILABLE OPTIONS

	PACKAGE			
TA	PLASTIC SMALL-OUTLINE [†] (JEDEC MS-012)	PLASTIC DUAL-IN-LINE PACKAGE (JEDEC MS-001)		
0°C to 70°C	SN75LBC184D	SN75LBC184P		
-40°C to 105°C	SN65LBC184D	SN65LBC184P		

† Add R suffix for taped and reel.

logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC} (see Note 1)	
Continuous voltage range at any bus terminal	–15 V to 15 V
Data input/output voltage	–0.3 V to 7 V
Receiver output current, IO	±20 mA
Electrostatic discharge: Contact discharge (IEC61000-4-2) A, B, GND (see Note	2) 30 kV
Air discharge (IEC61000-4-2) A, B, GND (see Note	2) 15 kV
Human body model (see Note 3) A, B, GND (see Note	2) 15 kV
All pins	3 kV
All terminals (Class 3A) (see Note 2)	8 kV
All terminals (Class 3B) (see Note 2)	1200 V
Continuous total power dissipation (see Note 4)	Internally Limited

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential input/output bus voltage, are with respect to network ground terminal.

- 2. GND and bus terminal ESD protection is beyond readily available test equipment capabilities for IEC 61000-4-2, EIA/JEDEC test method A114-A and MIL-STD-883C method 3015. Ratings listed are limits of test equipment; device performance exceeds these limits
- 3. Tested in accordance with JEDEC Standard 22, Test Method A114-A.
- 4. The driver shuts down at a junction temperature of approximately 160°C. To operate below this temperature, see the Dissipation Rating Table.

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{A}} \leq 25^{\circ}\mbox{C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW	377 mW
Р	1150 mW	9.2 mW/°C	736 mW	598 mW

recommended operating conditions

			MIN [‡]	TYP	MAX	UNIT
Supply voltage, V _{CC}	pply voltage, V _{CC} 4.75 5 5		5.25	V		
Voltage at any bus terminal (separately	or common mode), V _I or V _{IC}		-7		12	V
High-level input voltage, VIH	D, DE, and RE		2			V
Low-level input voltage, V _{IL}	D, DE, and RE				0.8	V
Differential input voltage, V _{ID}	Differential input voltage, VID				12	V
High lavel autout avenue I.	Driver		-60			mA
High-level output current, IOH	Receiver		-8			mA
Laurelauri autori aumant La	Driver				60	A
Low-level output current, IOL	Receiver				4	mA
Constitution for a state of the	SN75LBC184		0		70	°C
Operating free-air temperature, T _A	SN65LBC184		-40		105	°C

[‡] The algebraic convention, in which the less-positive (more-negative) limit is designated minimum, is used in this data sheet.

DRIVER SECTION

electrical characteristics over recommended operating conditions (unless otherwise noted)

	PARAMETER	ALTERNATE SYMBOLS	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
			DE = RE = 5 V, No Load		12	25	mA	
Icc	Supply current	NA	$\overline{DE} = 0 \text{ V}, \qquad \overline{RE} = 5 \text{ V},$ No Load		175	300	μΑ	
lн	High-level input current (D, DE, RE)	NA	V _I = 2.4 V			50	μΑ	
I _{IL}	Low-level input current (D, DE, RE)	NA	V _I = 0.4 V	-50			μΑ	
			V _O = −7 V	-250	-120			
los	Short-circuit output current (see Note 5)	NA	VO = VCC			250	mA	
	(See Note 3)		V _O = 12 V			250		
loz	High-impedance output current	NA		See Receiver I _I		er I _I	mA	
VO	Output voltage	V _{oa} , V _{ob}	IO = 0	0		VCC	V	
VOC(PP)	Peak-to-peak change in common- mode output voltage during state transitions	NA	See Figures 5 and 6	0.8		V		
Voc	Common-mode output voltage	V _{os}	See Figure 4	1		3	V	
ΔV _{OC} (SS)	Magnitude of change, common- mode steady-state output voltage	$ V_{OS} - \overline{V}_{OS} $	See Figure 5			0.1	V	
D./ 1	Magnitude of differential output	.,	IO = 0	1.5		6	V	
IVODI	voltage V _A – V _B	Vo	$R_L = 54 \Omega$, See Figure 4	1.5			V	
Δ V _{OD}	Change in differential voltage mag- nitude between logic states	$ V_t - \overline{V}_t $	R _L = 54 Ω			0.1	V	

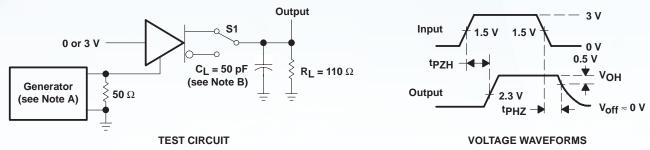
 † All typical values are measured with T_A = 25°C and V_{CC} = 5 V. NOTE 5: This parameter is measured with only one output being driven at a time.

switching characteristics over recommended operating conditions (unless otherwise noted)

	PARAMETER		TEST CONDITIONS			MAX	UNIT
t _d (DH)	Differential output delay time, low-to-high-level output					1.3	μs
t _d (DL)	Differential-output delay time, high-to-low-level output]				1.3	μs
tPLH	Propagation delay time, low-to-high-level output	$R_L = 54 \Omega$, $C_L = 50 pF$, See Figure 5			0.5	1.3	μs
tPHL	Propagation delay time, high-to-low-level output				0.5	1.3	μs
tsk(p)	Pulse skew $(t_{d(DH)} - t_{d(DL)})$				75	150	ns
t _r	Rise time, single ended			0.25		1.2	μs
t _f	Fall time, single ended			0.25		1.2	μs
^t PZH	Output enable time to high level	$R_L = 110 \Omega$,	See Figure 2			3.5	μs
tPZL	Output enable time to low level	$R_L = 110 \Omega$,	See Figure 3			3.5	μs
tPHZ	Output disable time from high level	$R_L = 110 \Omega$,	See Figure 2			2	μs
tPLZ	Output disable time from low level	$R_L = 110 \Omega$,	See Figure 3			2	μs

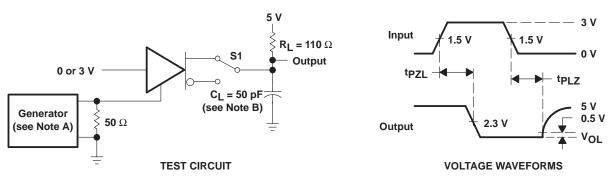
RECEIVER SECTION

electrical characteristics over recommended operating conditions (unless otherwise noted)


PARAMETER	TEST C $DE = \overline{RE} = 0 \text{ V},$	ONDITIONS		MIN	TYP [†]	MAX	UNIT
	DE - PE - 0.V					IVIAA	ONT
	DL = NL = 0 V,	No Load				3.9	mA
ply current (total package)	RE = 5 V, No Load	DE = 0 V,				300	μА
		V _I = 12 V				250	
	04 - 1 - 1 - 0 1	V _I = 12 V,	VCC = 0			250	
Input current	Otner input = 0 V	V _I = -7 V		-200			μΑ
		$V_{ } = -7 V$,	VCC = 0	-200			
h-impedance-state output current	V _O = 0.4 V to 2.4 V					±100	μΑ
ut hysteresis voltage					70		mV
itive-going input threshold voltage						200	mV
pative-going input threshold voltage				-200			mV
h-level output voltage	$I_{OH} = -8 \text{ mA}$	Figure 7		2.8			V
r-level output voltage	I _{OL} = 4 mA	Figure 7				0.4	V
	n-impedance-state output current ut hysteresis voltage ittive-going input threshold voltage gative-going input threshold voltage n-level output voltage	No Load Other input = 0 V n-impedance-state output current Vo = 0.4 V to 2.4 V It hysteresis voltage itive-going input threshold voltage pative-going input threshold voltage IOH = -8 mA	No Load	No Load	No Load $ No Load $ $ V_{I} = 12 \ V $ $ V_{I} = 12 \ V , \qquad V_{CC} = 0 $ $ V_{I} = -7 \ V , \qquad V_{CC} = 0 $	No Load $ V_{I} = 12 \text{ V} $ $ V_{I} = 12 \text{ V} $ $ V_{I} = 12 \text{ V} , V_{CC} = 0 $ $ V_{I} = -7 $	No Load No Load $V_{I} = 12 \ V$ 250 $V_{I} = 12 \ V$ $V_{CC} = 0$ 250 $V_{I} = 7 \ V$ $V_{CC} = 0$ 250 $V_{I} = 7 \ V$ $V_{CC} = 0$ 250 $V_{I} = 7 \ V$ $V_{CC} = 0$ 250 $V_{I} = 7 \ V$ $V_{CC} = 0$ 200 $V_{I} = 7 \ V$ 4100 $V_{CC} = 0$ 200 V

 $[\]dagger$ All typical values are at V_{CC} = 5 V, T_A = 25°C.

switching characteristics over recommended operating conditions (unless otherwise noted)


PARAMETER		TEST CO	MIN	TYP	MAX	UNIT	
tPLH	Propagation delay time, low-to-high-level output	0 50 - 5	On a Firmer 7			150	ns
tPHL	Propagation delay time, high-to-low-level output	$C_L = 50 \text{ pF},$	See Figure 7			150	ns
t _{sk(p)}	Pulse skew (tpHL - tpLH)					50	ns
t _r	Rise time, single ended	C Finan 7			20		ns
tf	Fall time, single ended	See Figure 7			20		ns
^t PZH	Output enable time to high level					100	ns
tPZL	Output enable time to low level	See Figure 8				100	ns
^t PHZ	Output disable time from high level					100	ns
tPLZ	Output disable time from low level					100	ns

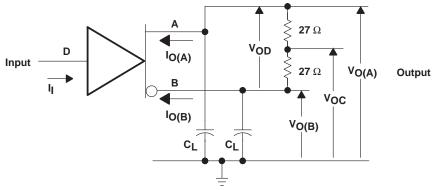

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR = 1.25 kHz, 50% duty cycle, $t_{\Gamma} \le 10$ ns, $t_{\Gamma} \le 10$ ns,
 - B. C_L includes probe and jig capacitance.

Figure 2. Driver tpzH and tpHZ Test Circuit and Voltage Waveforms

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR = 1.25 kHz, 50% duty cycle, $t_{\Gamma} \le 10$ ns, $t_{\Gamma} \le 10$ ns,
 - B. C_L includes probe and jig capacitance.

Figure 3. Driver $t_{\mbox{\scriptsize PZL}}$ and $t_{\mbox{\scriptsize PLZ}}$ Test Circuit and Voltage Waveforms

- NOTES: A. Resistance values are in ohms and are 1% tolerance.
 - B. C_L includes probe and jig capacitance.

Figure 4. Driver Test Circuit, Voltage, and Current Definitions

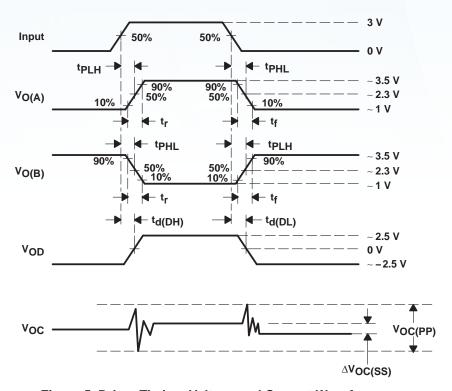
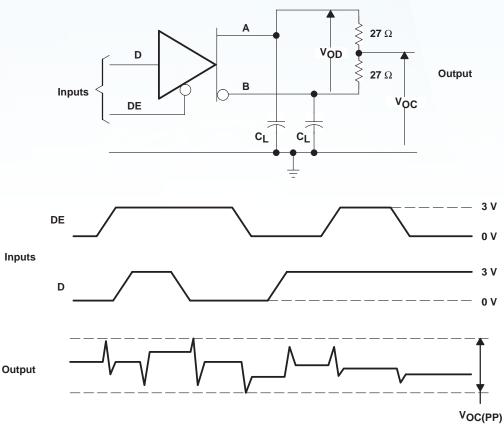
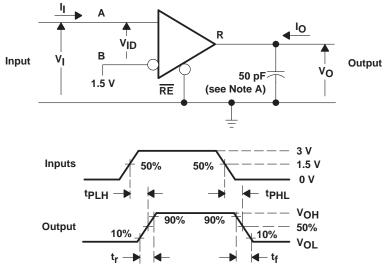
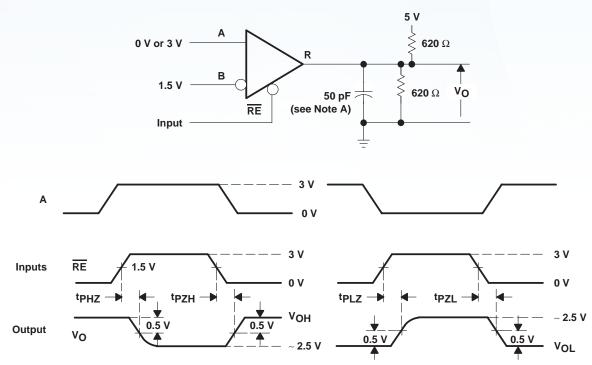



Figure 5. Driver Timing, Voltage and Current Waveforms



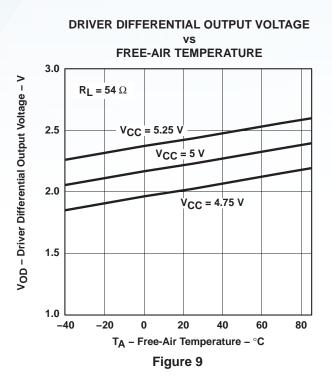
NOTES: A. Resistance values are in ohms and are 1% tolerance.

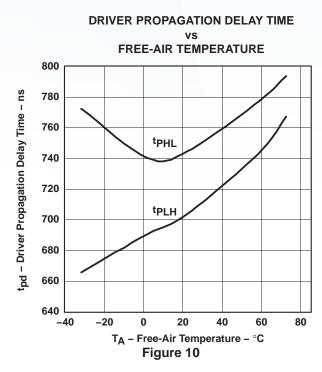
B. C_L includes probe and jig capacitance (\pm 10%).

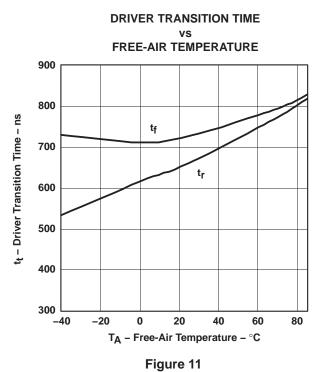

Figure 6. Driver V_{OC(PP)} Test Circuit and Waveforms

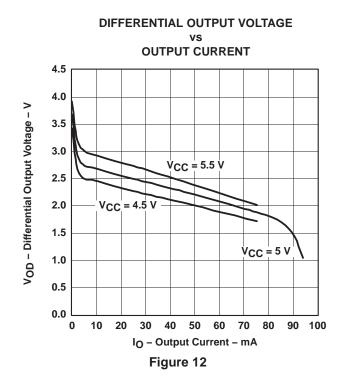
NOTE A: This value includes probe and jig capacitance (\pm 10%).

Figure 7. Receiver $t_{\mbox{\scriptsize PLH}}$ and $t_{\mbox{\scriptsize PHL}}$ Test Circuit and Voltage Waveforms

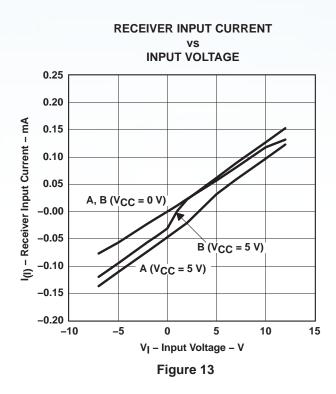


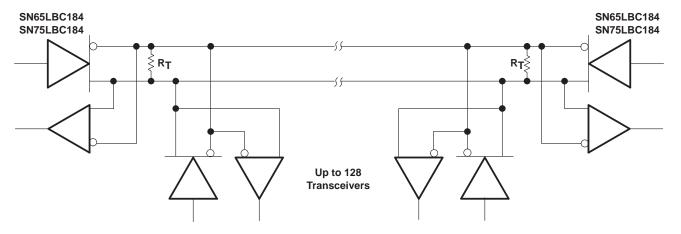

NOTE A: This value includes probe and jig capacitance (\pm 10%).


Figure 8. Receiver t_{PZL} , t_{PLZ} , t_{PZH} , and t_{PHZ} Test Circuit and Voltage Waveforms



TYPICAL CHARACTERISTICS





TYPICAL CHARACTERISTICS

APPLICATION INFORMATION

NOTE A: The line should be terminated at both ends in its characteristic impedance ($R_T = Z_O$). Stub lengths off the main line should be kept as short as possible.

Figure 14. Typical Application Circuit

APPLICATION INFORMATION

'LBC184 test description

The 'LBC184 is tested against the IEC 61000-4-5 recommended transient identified as the combination wave. The combination wave provides a 1.2-/50- μ s open-circuit voltage waveform and a 8-/20- μ s short-circuit current waveform shown in Figure 15. The testing is performed with a combination/hybrid pulse generator with an effective output impedance of 2Ω . The setup for the overvoltage stress is shown in Figure 16 with all testing performed with power applied to the 'LBC184 circuit.

NOTE

High voltage transient testing is done on a sampling basis.

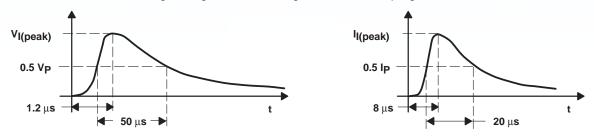


Figure 15. Short-Circuit Current Waveforms

The 'LBC184 is tested and evaluated for both maximum (single pulse) as well as life test (multiple pulse) capabilities. The 'LBC184 is evaluated against transients of both positive and negative polarity and all testing is performed with the worst-case transient polarity. Transient pulses are applied to the bus pins (A & B) across ground as shown in Figure 16.

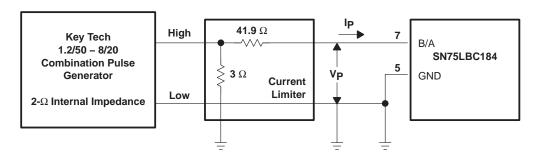


Figure 16. Overvoltage-Stress Test Circuit

An example waveform as seen by the 'LBC184 is shown in Figure 17. The bottom trace is current, the middle trace shows the clamping voltage of the device and the top trace is power as calculated from the voltage and current waveforms. This example shows a peak clamping voltage of 16 V, peak current of 33.6 A yielding an absorbed peak power of 538 W.

NOTE

A circuit reset may be required to ensure normal data communications following a transient noise pulse of greater than 250 W peak.

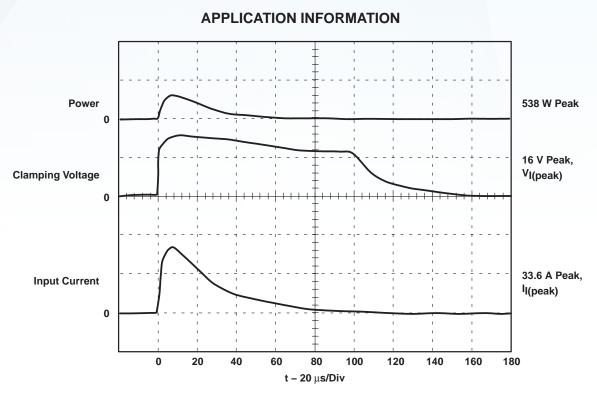
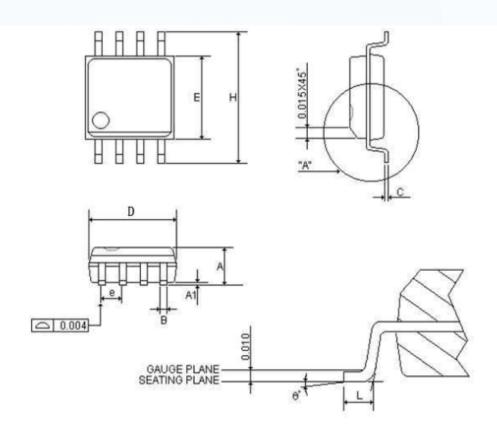
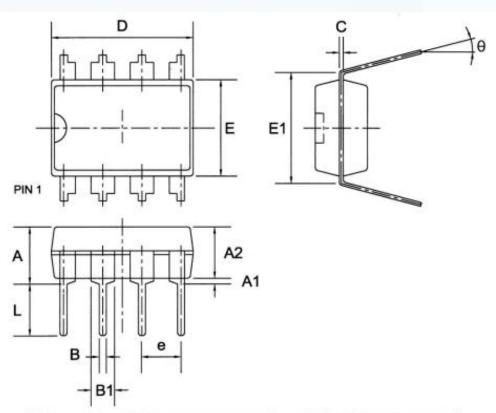



Figure 17. Typical Surge Waveform Measured At Terminals 5 and 7



SOP 8

SYMBOLS	MIN	NOR	MAX	MIN	NOR	MAX
STIVIDOLS		(inch)			(mm)	
Α	0.058	0.064	0.068	1.4732	1.6256	1.7272
A1	0.004	-	0.010	0.1016	-	0.254
В	0.013	0.016	0.020	0.3302	0.4064	0.508
C	0.0075	0.008	0.0098	0.1905	0.2032	0.2490
D	0.186	0.191	0.196	5.9944	6.1214	6.1976
E	0.150	0.154	0.157	3.81	3.9116	3.9878
e	-	0.050	1	-	1.27	1
Н	0.228	0.236	0.244	5.7912	5.9944	6.1976
L	0.015	0.025	0.050	0.381	0.635	1.27
0 °	0 °	-	8 ⁰	0 °	-	8 ⁰

Symbol	Dimensions In Millmeters			Dimensions In Inches		
	Min	Nom	Max	Min	Nom	Max
Α			4.31	_	_	0.170
A1	0.38			0.015	_	
A2	3.15	3.40	3.65	0.124	0.134	0.144
В	0.38	0.46	0.51	0.015	0.018	0.020
B1	1.27	1.52	1.77	0.050	0.060	0.070
С	0.20	0.25	0.30	0.008	0.010	0.012
D	8.95	9.20	9.45	0.352	0.362	0.372
E	6.15	6.40	6.65	0.242	0.252	0.262
E1	_	7.62			0.300	
е		2.54	_	_	0.100	_
L	3.00	3.30	3.60	0.118	0.130	0.142
θ	0*	_	15	0"	· —	15

Disclaimer

EVVOSEMI ("EVVO") reserves the right to make corrections, enhancements, improvements, and other changes to its products and services at any time, and to discontinue any product or service without notice.

EVVO warrants the performance of its hardware products to the specifications applicable at the time of sale in accordance with its standard warranty. Testing and other quality control techniques are used as deemed necessary by EVVO to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Customers should obtain and confirm the latest product information and specifications before final design, purchase, or use. EVVO makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does EVVO assume any liability for application assistance or customer product design. EVVO does not warrant or accept any liability for products that are purchased or used for any unintended or unauthorized application.

EVVO products are not authorized for use as critical components in life support devices or systems without the express written approval of EVVOSEMI.

The EVVO logo and EVVOSEMI are trademarks of EVVOSEMI or its subsidiaries in relevant jurisdictions. EVVO reserves the right to make changes without further notice to any products herein.