

ESD

TVS

MOS

LDO

Diode

Sensor

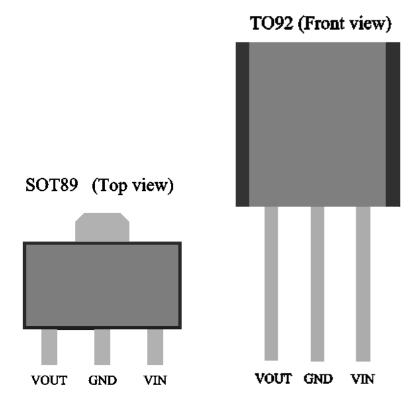
DC-DC

Product Specification

Domestic Part Number	78LXX
Overseas Part Number	78LXX
▶ Equivalent Part Number	78LXX

Features

- Output Current of 100mA
- Thermal Overload Protection
- Short Circuit Protection

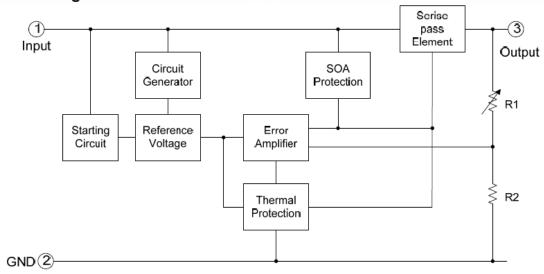

- Output transistor safe area protection
- No external components
- Package: SOT89-3 and TO92
- Output voltage accuracy: tolerance ±5%

General Description

78LXX is three-terminal positive regulators. One of these regulators can deliver up to 100 mA of output current. The internal limiting and thermal -shutdown features of the regulator make them essentially immune to overload. When used as a

replacement for a zener diode-resistor Combination, an effective improvement in output impedance can be obtained, together with lower quiescent current.

Pin Configuration



Selection Table

Part No.	Output Voltage	Package	Marking
78L05-EV	5.0V		
78L06-EV	6.0V	TO92	
78L08-EV	8.0V	SOT89	
78L09-EV	9.0V	30189	
78L12-EV	12V		

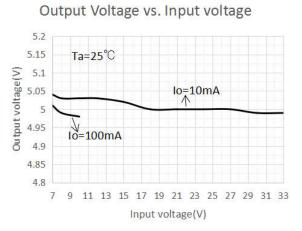
Block Diagram

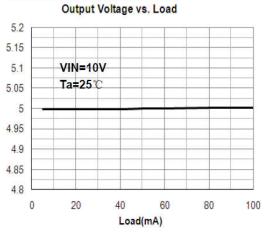
Absolute Maximum Ratings (Ta=25℃)

Parameter	Rating	Unit
Input supply voltage: VIN	30	V
MAX. Output current:lout	100	mA
MAX Power:Pmax	0.5	w
Maximum junction temperature:Tj	-25~125	C
Storage temperature:Tstr	-55~125	$^{\circ}$
Soldering temperature and time	+260(Recommended 10S)	C

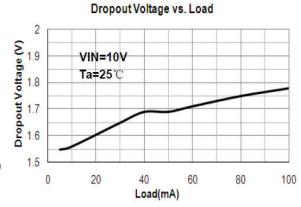
Note: The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions.

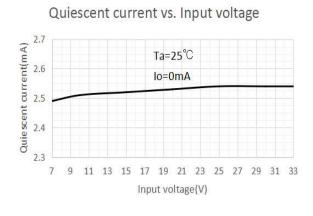
Electrical Characteristics

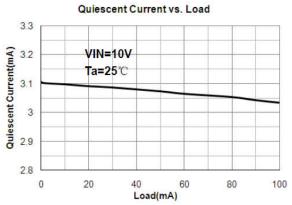

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
(6)		Io=40mA, VIN=10V	0.964vout	vout	1.036vout		
Output Voltage	Vout	Io=1mA~40mA VIN=7V~18V	0.96vout	vout	1.04vout	V	
		Io=1mA~10mA VIN=10V	0.95vout	vout	1.05vout		
Line Regulation	LNR	VIN=7V~18V, Io=20mA	-150	1	150	mV	
Line Regulation	LINK	VIN=8V~18V, Io=20mA	-100	-	100	IIIV	
Load Dogulation	LDR	VIN=10V, Io=1mA~100mA	-100	-	100	m\/	
Load Regulation	LDK	VIN=10V, Io=1mA~40mA	-30	-	30	mV	
Dropout Voltage	V_{DIF}	Tj=25℃,Io=100mA	-	2	-	V	
Output noise Voltage	V _N	F=10Hz to 100KHz	-	40	-	uV/Vo	
Ripple Rejection	PSRR	Tj=25℃,f=120Hz, Io=40mA, VIN=8V~20V	-	80	-	dB	
Quiescent Current	Ι _Q	VIN=10V, IOUT=40mA	-	-	5.5	mA	
Quiescent Current		VIN=8V~18V, I ₀ =20mA	-1.5	-	1.5		
Change	\triangle I $_{ extsf{Q}}$	VIN=10V, IOUT=1mA~40mA,	-0.1	-	0.1	mA	


LNR: Line Regulation. The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

LDR: Load Regulation. The change in output voltage for a change in load current at constant chip temperature.




Typical Performance Characteristics



Output voltage vs. Temperature 5.2 Io=10mA 5.15 Output voltage(V) Vin=7V 5.1 5.05 4.95 4.9 4.85 4.8 10 70 100 130 -20 40 Temperature(°C)

Operation Description

78LXX is designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short circuit current as the voltage across the pass transistor is increased.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high frequency characteristics to insure stable operation under all load conditions. A 0.33µFor larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulator's input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead.

Typical Application

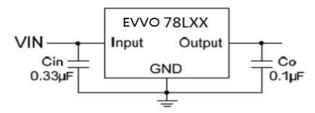


Fig.1 Fixed Output Regulator

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V above the output voltage even during the low point on the input ripple voltage.

- Cin is required if regulator is located an appreciable distance from power supply filter.
- Co is not needed for stability; however, it does improve transient response.

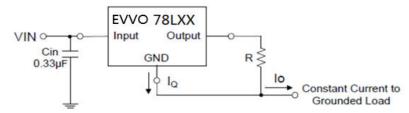


Fig.2 Constant Current Regulator

The 78LXX regulator can also be used as a current source when connected as Fig.2. In order to minimize dissipation the 78LXX is chosen in this application. Resistor R determines the current as

$$I_{o} = \frac{5V}{R} + I_{Q}$$

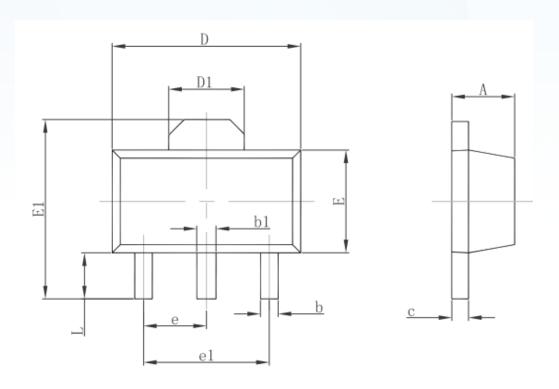
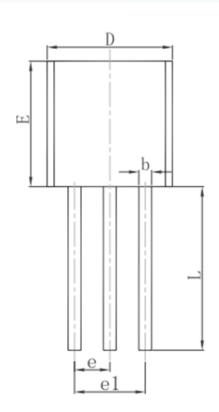
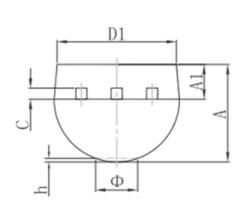


Fig.3 Adjustable Output Regulator


Package Information 3-pin SOT89 Outline Dimensions



Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min.	Max.	Min.	Max.
Α	1.400	1.600	0.055	0.063
b	0.320	0.520	0.013	0.020
b1	0.400	0.580	0.016	0.023
С	0.350	0.440	0.014	0.017
D	4.400	4.600	0.173	0.181
D1	1.550 REF.		0.061 REF.	
E	2.300	2.600	0.091	0.102
E1	3.940	4.250	0.155	0.167
е	1.500 TYP.		0.060	TYP.
e1	3.000 TYP.		0.118	TYP.
L	0.900	1.200	0.035	0.047

3-pin TO92 Outline Dimensions

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min.	Max.	Min.	Max.	
Α	3.300	3.700	0.130	0.146	
A1	1.100	1.400	0.043	0.055	
b	0.380	0.550	0.015	0.022	
С	0.360	0.510	0.014	0.020	
D	4.300	4.700	0.169	0.185	
D1	3.430		0.135	Se (9) (9)	
E	4.300	4.700	0.169	0.185	
е	1.270 TYP.		0.050 TYP.		
e1	2.440	2.640	0.096	0.104	
L	14.100	14.500	0.555	0.571	
Ф		1.600	0.063		
h	0.000	0.380	0.000	0.015	

Disclaimer

EVVOSEMI ("EVVO") reserves the right to make corrections, enhancements, improvements, and other changes to its products and services at any time, and to discontinue any product or service without notice.

EVVO warrants the performance of its hardware products to the specifications applicable at the time of sale in accordance with its standard warranty. Testing and other quality control techniques are used as deemed necessary by EVVO to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Customers should obtain and confirm the latest product information and specifications before final design, purchase, or use. EVVO makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does EVVO assume any liability for application assistance or customer product design. EVVO does not warrant or accept any liability for products that are purchased or used for any unintended or unauthorized application.

EVVO products are not authorized for use as critical components in life support devices or systems without the express written approval of EVVOSEMI.

The EVVO logo and EVVOSEMI are trademarks of EVVOSEMI or its subsidiaries in relevant jurisdictions. EVVO reserves the right to make changes without further notice to any products herein.