ESD TVS MOS LDO Diode Sensor DC-DC # **Product Specification** | Domestic Part Number | CEM9926A | |--------------------------|----------| | Overseas Part Number | CEM9926A | | ▶ Equivalent Part Number | CEM9926A | #### **Features** $$V_{DS}(V) = 20V$$ $I_D = 7A$ $R_{DS(ON)}$ < 26m Ω (V_{GS} = 4.5V) $R_{DS(ON)} < 33 m\Omega (V_{GS} = 2.5V)$ $R_{DS(ON)}$ < 42m Ω (V_{GS} = 1.8V) SOP-8 ### Absolute Maximum Ratings T_A=25°C unless otherwise noted | Parameter | | Symbol | Maximum | Units | |--|----------------------|-------------------|------------|-------| | Drain-Source Voltage | ; | V_{DS} | 20 | V | | Gate-Source Voltage | | V_{GS} | ±8 | V | | Continuous Drain | T _A =25°C | | 7 | | | Current ^A | T _A =70°C | I_D | 6 | Α | | Pulsed Drain Current B | | I _{DM} | 40 | | | | T _A =25°C | P_{D} | 2 | W | | Power Dissipation | T _A =70°C | | 1.44 | VV | | Junction and Storage Temperature Range | | T_J , T_{STG} | -55 to 150 | °C | ### **Thermal Characteristics** | Parameter | | Symbol | Тур | Max | Units | |---------------------------------------|--------------|-----------------|-----|------|-------| | Maximum Junction-to-Ambient A | t ≤ 10s | $R_{\theta JA}$ | 48 | 62.5 | °C/W | | Maximum Junction-to-Ambient A | Steady-State | I V ⊕JA | 74 | 110 | °C/W | | Maximum Junction-to-Lead ^C | Steady-State | $R_{ heta JL}$ | 35 | 40 | °C/W | #### Electrical Characteristics (T_J=25°C unless otherwise noted) | Symbol | Parameter | Conditions | | Min | Тур | Max | Units | |---------------------|------------------------------------|--|-----------------------|-----|------|-----|-------| | STATIC F | PARAMETERS | - | <u> </u> | | - | | | | BV _{DSS} | Drain-Source Breakdown Voltage | $I_D = 250 \mu A, V_{GS} = 0 V$ | | 20 | | | V | | I _{DSS} | Zero Gate Voltage Drain Current | V _{DS} =16V, V _{GS} =0V | | | | 1 | | | DSS | Zero Gate Voltage Drain Current | | T _J =55°C | | | 5 | μΑ | | I_{GSS} | Gate-Body leakage current | V_{DS} =0V, V_{GS} =±8V | | | | 100 | nA | | $V_{GS(th)}$ | Gate Threshold Voltage | $V_{DS}=V_{GS} I_{D}=250\mu A$ | | 0.3 | 0.5 | 0.8 | V | | $I_{D(ON)}$ | On state drain current | V_{GS} =4.5V, V_{DS} =5V | | 30 | | | Α | | | | V_{GS} =4.5V, I_D =7A | | | 21.6 | 26 | mO | | R | Static Drain-Source On-Resistance | | T _J =125°C | | 29.2 | 36 | mΩ | | R _{DS(ON)} | Static Drain-Source On-Resistance | V_{GS} =2.5V, I_D =5A | | | 26.4 | 33 | mΩ | | | | V_{GS} =1.8V, I_D =4A | | | 33.3 | 42 | mΩ | | g _{FS} | Forward Transconductance | V_{DS} =5V, I_{D} =5A | | | 22 | | S | | V_{SD} | Diode Forward Voltage | I _S =1A | | | 0.76 | 1 | V | | I_S | Maximum Body-Diode Continuous Curr | ent | | | | 3 | Α | | DYNAMIC | PARAMETERS | | | | | | | | C_{iss} | Input Capacitance | | | | 1050 | | pF | | Coss | Output Capacitance | V _{GS} =0V, V _{DS} =10V, f=1MHz | | | 163 | | pF | | C_{rss} | Reverse Transfer Capacitance | | | | 129 | | pF | | R_g | Gate resistance | V _{GS} =0V, V _{DS} =0V, f=1MHz | | | 4 | | Ω | | SWITCHI | NG PARAMETERS | | • | | • | | | | Q_g | Total Gate Charge | | | | 15.2 | | nC | | Q_{gs} | Gate Source Charge | V_{GS} =4.5V, V_{DS} =10V, I_{D} =7A | | | 1 | | nC | | Q_{gd} | Gate Drain Charge | | | | 4 | | nC | | t _{D(on)} | Turn-On DelayTime | | | | 6.5 | | ns | | t _r | Turn-On Rise Time | V_{GS} =5V, V_{DS} =10V, R_L =1.5 Ω , R_{GEN} =3 Ω | | | 9 | | ns | | $t_{D(off)}$ | Turn-Off DelayTime | | | | 56.5 | | ns | | t _f | Turn-Off Fall Time | | | | 13.2 | | ns | | t _{rr} | Body Diode Reverse Recovery time | I _F =5A, dI/dt=100A/μs | 1 | | 21 | | ns | | Q_{rr} | Body Diode Reverse Recovery charge | I _F =5A, dI/dt=100A/μs | | | 7.1 | | nC | A: The value of $R_{\theta,JA}$ is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t ≤ 10s thermal resistance rating. B: Repetitive rating, pulse width limited by junction temperature. C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead $R_{\theta JL}$ and lead to ambient. D. The static characteristics in Figures 1 to 6 are obtained using $80\mu s$ pulses, duty cycle 0.5% max. E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The SOA curve provides a single pulse rating. #### TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS Fig 1: On-Region Characteristics Figure 2: Transfer Characteristics Figure 3: On-Resistance vs. Drain Current and **Gate Voltage** Figure 4: On-Resistance vs. Junction Temperature Figure 5: On-Resistance vs. Gate-Source Voltage Figure 6: Body-Diode Characteristics ### TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS Figure 7: Gate-Charge Characteristics Figure 8: Capacitance Characteristics Figure 9: Maximum Forward Biased Safe Operating Area (Note E) Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note E) Figure 11: Normalized Maximum Transient Thermal Impedance # Package Mechanical Data-SOP-8 | Symbol | Dim i | | | | |--------|--------------|--------|---------|--| | Symbol | Min | Nor | Max | | | A | 1. 350 | 1.550 | 1.750 | | | A1 | 0.100 | 0. 175 | 0. 250 | | | A2 | 1.350 | 1.450 | 1.550 | | | b | 0. 330 | 0. 420 | 0. 510 | | | С | 0. 170 | 0. 210 | 0. 250 | | | D | 4. 800 | 4. 900 | 5. 000 | | | е | 1. 270 (BSC) | | | | | Е | 5. 800 | 6. 000 | 6. 200 | | | E1 | 3. 800 | 3. 900 | 4. 000 | | | L | 0.400 | 0.835 | 1. 2700 | | | О | 0° | 4° | 8° | | # Marking # **Ordering information** | Order Code | Order Code Package | | Deliverymode | |------------|--------------------|------|---------------| | CEM9926A | SOP-8 | 3000 | Tape and reel | # Disclaimer EVVOSEMI ("EVVO") reserves the right to make corrections, enhancements, improvements, and other changes to its products and services at any time, and to discontinue any product or service without notice. EVVO warrants the performance of its hardware products to the specifications applicable at the time of sale in accordance with its standard warranty. Testing and other quality control techniques are used as deemed necessary by EVVO to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. Customers should obtain and confirm the latest product information and specifications before final design, purchase, or use. EVVO makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does EVVO assume any liability for application assistance or customer product design. EVVO does not warrant or accept any liability for products that are purchased or used for any unintended or unauthorized application. EVVO products are not authorized for use as critical components in life support devices or systems without the express written approval of EVVOSEMI. The EVVO logo and EVVOSEMI are trademarks of EVVOSEMI or its subsidiaries in relevant jurisdictions. EVVO reserves the right to make changes without further notice to any products herein.